Diferencia entre revisiones de «Práctica 8: Caminos Eulerianos y Hamiltonianos (Algoritmos III)»

De Cuba-Wiki
Línea 7: Línea 7:


==Ejercicio 08.04:==
==Ejercicio 08.04:==
Probamos las 2 implicaciones por separado:
=>) Como G es conexo y tiene circuito euleriano, cada nodo tiene grado par y por lo tanto G contiene algun ciclo C. Si sacamos los ejes de C pueden pasar 2 cosas:
Si C era el único circuito, luego trivial.
Si no nos queda G' donde cada nodo también tendrá grado par, y por lo tanto volvemos a aplicar esto recursivamente.
(Una demostración más formal se puede hacer usando inducción, ya que justamente como dije arriba, es cuestión de aplicar recursivamente una función que nos saque un circuito).
<=) Sea G conexo y particionable en K circuitos: C1, C2, ... , Ck
Si sacamos los ejes de C1, luego como G es conexo nos quedan nodos que habían en común entre C1, y otro Ci (Esto es casi trivial probarlo). Luego hay que nuevamente ir recorriendo los ciclos, sabiendo que tendremos nodos compartidos con ciclos no recorridos anteriormente, y esto se podrá hacer k veces, y luego habremos encontrado nuestro circuito euleriano.
==Ejercicio 08.05:==
==Ejercicio 08.05:==
==Ejercicio 08.06:==
==Ejercicio 08.06:==

Revisión del 01:22 20 nov 2006

Ejercicio 08.01:


a)
b)

Ejercicio 08.02:

Ejercicio 08.03:

1.Si 2.Si 3.No 4.No

Ejercicio 08.04:

Probamos las 2 implicaciones por separado:

=>) Como G es conexo y tiene circuito euleriano, cada nodo tiene grado par y por lo tanto G contiene algun ciclo C. Si sacamos los ejes de C pueden pasar 2 cosas: Si C era el único circuito, luego trivial. Si no nos queda G' donde cada nodo también tendrá grado par, y por lo tanto volvemos a aplicar esto recursivamente.

(Una demostración más formal se puede hacer usando inducción, ya que justamente como dije arriba, es cuestión de aplicar recursivamente una función que nos saque un circuito).

<=) Sea G conexo y particionable en K circuitos: C1, C2, ... , Ck Si sacamos los ejes de C1, luego como G es conexo nos quedan nodos que habían en común entre C1, y otro Ci (Esto es casi trivial probarlo). Luego hay que nuevamente ir recorriendo los ciclos, sabiendo que tendremos nodos compartidos con ciclos no recorridos anteriormente, y esto se podrá hacer k veces, y luego habremos encontrado nuestro circuito euleriano.

Ejercicio 08.05:

Ejercicio 08.06:

Ejercicio 08.07:


a)
b)

Ejercicio 08.08:


a) Para todo n impar, n >1
b) K2

Ejercicio 08.09:


a)
b)
c)

Ejercicio 08.10:

Ejercicio 08.11:


a)
b)
c)
d)
e)

Ejercicio 08.12:

Ejercicio 08.13:

Ejercicio 08.14:

Ejercicio 08.15:

Ejercicio 08.16:

Ejercicio 08.17:

Dem: Si G es hamiltoniano entonces, trivialmente, tambien G+uv lo es. Sup. que G+uv es hamiltoniano pero G no lo es. Entonces, como en la dem. del teorema 4.3, obtenemos (4.4). Pero esto contradice la hipotesis (4.5) [Ver North-Holland]

Ejercicio 08.18:

Ejercicio 08.19:

Ejercicio 08.20:


a)
b)
c)
d)

Ejercicio 08.21:


a)
b)
c)
d)
e)

Ejercicio 08.22:

Ejercicio 08.23:


a)
b)
c)

Ejercicio 08.24:


a)
b)
c)

Ejercicio 08.25: