Edición de «Práctica 5 (LyC Verano)»

De Cuba-Wiki
Advertencia: no has iniciado sesión. Tu dirección IP se hará pública si haces cualquier edición. Si inicias sesión o creas una cuenta, tus ediciones se atribuirán a tu nombre de usuario, además de otros beneficios.

Puedes deshacer la edición. Antes de deshacer la edición, comprueba la siguiente comparación para verificar que realmente es lo que quieres hacer, y entonces publica los cambios para así efectuar la reversión.

Revisión actual Tu texto
Línea 1: Línea 1:
{{Back|Lógica y Computabilidad}}
==Ejercicio 01==
 
==Ejercicio 02==
==Ejercicio 02==
===a)===
===a)===
''consultar por las dudas''
*1.SP3: (¬φ → ¬<font color=red>φ</font>) → [ (¬φ → <font color=red>φ</font>) → φ ]
 
*2.VALE: (¬φ → ¬φ) (ya que p p es tautologia)
*1.SP1: ¬φ → ((¬φ → ¬φ) → ¬φ)
*3.MP 1 y 2: (¬φ → φ) → φ
*2.SP2: (¬φ ((¬φ → ¬φ) → ¬φ)) → ((¬φ → (¬φ → ¬φ)) → (¬φ → ¬φ))
→ (¬φ → φ) → φ es tautologia
*3.MP1y2: (¬φ → (¬φ → ¬φ)) → (¬φ → ¬φ)
*4.SP1: ¬φ → (¬φ → ¬φ)
*5.MP3y4: (¬φ ¬φ)
*6.SP3: (¬φ → ¬φ) → ((¬φ → φ) → φ)
*7.MP5y6: (¬φ φ) →  φ
|- (¬φ → φ) → φ


===b)===
===b)===
Línea 22: Línea 15:
*6.AXb: φ→ψ
*6.AXb: φ→ψ
*7.MP 5 y 6: φ→θ
*7.MP 5 y 6: φ→θ
→ {φ→ψ,ψ→θ} |- φ→θ
→ {φ→ψ,ψ→θ} infiere φ→θ


===c)===
===c)===
<br>Si (¬φ → ¬ψ) es F, la formula es tautologia.
 
<br>Si (¬φ → ¬ψ) es T, entonces hay que probar que vale (ψ→φ). Entonces:
(Falta terminar)
*1.SP3: (¬φ → ¬ψ) [ (¬φ → ψ) → φ ]  
*1.SP2: ( <font color=red>[¬φ → ¬ψ]</font>→(<font color=blue>φ</font><font color=red>[ψ → φ]</font>) ) → ( (<font color=red>[¬φ → ¬ψ]</font><font color=blue>φ</font>)→(<font color=red>[¬φ → ¬ψ]</font>→<font color=red>[ψ → φ]</font>) )
*2.VALE: (¬φ ¬ψ) (x HI)
*2.SP1: φ→[ψ → φ]
*3.MP 1 y 2: (¬φ → ψ) → φ
*3.VALE: [¬φ → ¬ψ]→(φ→[ψ → φ]) = [¬φ → ¬ψ]→T = tautologia
*4.SP1: ψ → (¬φ → ψ)
*4.MP 1 y 3: ([¬φ → ¬ψ]→φ)→([¬φ → ¬ψ]→[ψ → φ])
*5.USANDO 3 y 4: {<font color=red>ψ</font> → (¬φ → ψ), (¬φ → ψ) → <font color=red>φ</font>} |- (ψ → φ) (x punto b)
*5.??
<br>→Vale (ψ → φ)
<br>→ |- (¬φ → ¬ψ)→(ψ → φ)


==Ejercicio 03==
==Ejercicio 03==
'''(Sientanse libres de cambiar esta respuesta por alguna mas formal)'''<br>
==Ejercicio 04==
Si Γ+ tiene un axioma que es contradicción luego ya se puede decir que Γ+ es inconsistente ya que es la negacion de una tautología que son los otros axiomas.<br>
Por otro lado si Γ+ tiene un axioma que es una contingencia luego hay para algunas valuaciones en instanciaciones de ese axioma que el resultado es 1 y en otras valuaciones que da 0.<br>
Buscamos que valores de nuestro esquema deberían ser 0 y cuales 1 para que nuestro esquema de 0<br>
Luego en los lugares donde deberiamos instanciar una formula con una valuacion que de 0, ponemos una formula que sea contradiccion, y donde debería ser uno ponemos una formula que sea tautología. Luego nuestro esquema se transformará en una contradicción con lo cual volvemos al ejemplo anterior.<br>
Ejemplo:<br>
Sea nuestro esquema de axioma: φ → ψ <br>
Luego para que esto sea contradiccion φ debería ser 1 y ψ debería ser 0.<br>
Para lograr esto instanciamos φ en una tautologia y ψ en una contradicción. <br>
Luego nuestro axioma será una contradicción.<br>
 
==Ejercicio 05==
===a)===
===a)===
'''Inducción:'''<br>
C.B. : Es facil verlo.<br>
H.I. : Es consistente Γn<br>
q.v.q. : Si cumple Γn entonces cumple Γn+1<br>
<br>
Por la manera en que se construye hay que ver 2 casos:
Γn U φn : Es consistente por definición
Γn U ¬φn: El problema se reduce a mostrar que si Γn U φn es inconsistente, luego y Γn es consistente, luego Γn U ¬φn tambien lo es.
===b)===
===b)===
===c)===
===c)===
Demostrar que Γ+ |- φ => φ <math>\in</math> Γ+ .
Sabemos que Γ+ |- φ entonces queremos ver que φ <math>\in</math> Γ+ .
Hay dos casos:
1) Si φ <math>\in</math> Γ+ es trivialmente verdadero. <br/>
2) Supongo φ <math>\notin</math> Γ+ entonces por 4) b) ¬φ <math>\in</math> Γ+ => Γ+ |- ¬φ pero por hipótesis Γ+ |- φ => Γ+ es inconsistente (ABSURDO!)
El absurdo provino de suponer que φ <math>\notin</math> Γ+, por lo que φ <math>\in</math> Γ+ .
===d)===
===d)===


==(Ejercicio que no está en la práctica del 2º cuatrimestre 2009)==
==Ejercicio 05==
===a)===
===a)===
<pre>
<pre>
Línea 95: Línea 54:
((p1 → p3) → ((p2 → p3) → ((p1 ٧ p2) → p3)))
((p1 → p3) → ((p2 → p3) → ((p1 ٧ p2) → p3)))
       ¬(p1 → p3)    (p2 → p3) → ((p1 ٧ p2) → p3))
       ¬(p1 → p3)    (p2 → p3) → ((p1 ٧ p2) → p3))
           p1                ¬(p2 → p3)     (p1 ٧ p2) → p3
           p1                ¬(p2 → p3)   ¬((p1 ٧ p2) → p3)
         ¬p3                    p2       ¬(p1 ٧ p2)     p3
         ¬p3                    p2               (p1 ٧ p2)  
                                ¬p3           ¬p1
                                  ¬p3                ¬p3
                                              ¬p2
</pre>
</pre>


¬P = (p1 ٨ ¬p3) ٧ (p2 ٨ ¬p3) ٧ (¬p1 ٨ ¬p2) ٧ ¬p3 = (¬p3 ٨ (p1 ٧ p2)) ٧ (¬p2 ٨ ¬p1) = (¬p3 ٨ ¬a) ٧ a ٧ p3 = 1.
¬P = (p1 ٨ ¬p3) ٧ (p2 ٨ ¬p3) ٧ ¬p3 = (p1 ٧ p2 ٧ T) ٨ ¬p3 = ¬p3. Es una contingencia
 
¬P = 1, entonces P = 0. P es una contradicción.


===c)===
===c)===
Línea 114: Línea 70:
¬p1    ¬p2
¬p1    ¬p2
</pre>
</pre>
¬P = ((¬p1 ٧ ¬p2) ٧ p3) ٨ ¬p4. Como cada variable aparece 1 vez, ¬P es contingencia
¬P = ((¬p1 ٧ ¬p2) ٨ ¬p4) ٧ p3. Como cada variable aparece 1 vez, ¬P es contingencia


==(Ejercicio que no está en la práctica del 2º cuatrimestre 2009)==
==Ejercicio 06==
===a)===
===a)===
<pre>
<pre>
(((p0 ٨ ¬p0) ٨ p1) ٨ ¬(p1 ٨ (p1 → p0)))
(((p0 ٨ ¬p0) ٨ p1) ٨ ¬(p1 ٨ (p1 → p0)))
          ((p0 ٨ ¬p0) ٨ p1)
              ((p0 ٨ ¬p0) ٨ p1)
          ¬(p1 ٨ (p1 → p0))
            ¬(p1 ٨ (p1 → p0))
              (p0 ٨ ¬p0)
                  (p0 ٨ ¬p0)
                p1
                      p1
          ¬p1   ¬(p1 → p0)
                ¬p1  
           ¬p0       p0
            p0    ¬(p1 → p0)
          ¬p0      ¬p0
           ¬p0     p0
            x        p1
            x        ¬p0
                    ¬p0
                    p1
                    x
                  ¬p0
                    x
</pre>
</pre>
Agrego una cosa. Cabe destacar que si un conjunto de formulas es insatisfacible, entonces, cualquier formula es consecuencia semantica de este. Por lo tanto, <math>alfa</math> pertenece a Con(r).
===b)===
===b)===
<pre>
<pre>
Línea 165: Línea 119:
</pre>
</pre>


==Ejercicio ==
==Ejercicio 07==
===a)===
===a)===
{p},{p->q}
(cualquiera que no tenga negaciones seguro que cumple)
===b)===
===b)===


==(Ejercicio que no está en la práctica del 2º cuatrimestre 2009)==
==Ejercicio 08==
<br>a) F El unico arbol de la formula p1 es ella misma, que es un arbol abierto. Sin embargo, la formula no es una tautologia.
<br>a) F El unico arbol de la formula p1 es ella misma, que es un arbol abierto. Sin embargo, la formula no es una tautologia.
<br>b) F El arbol (p1 ٨ ¬p1) para esa misma formula no es cerrado, pero la formula es una contradiccion. El asunto es que el arbol no esta completo.
<br>b) F El arbol (p1 ٨ ¬p1) para esa misma formula no es cerrado, pero la formula es una contradiccion. El asunto es que el arbol no esta completo.
<br>c) V (Esta demostrada en algun lado, pero no me acuerdo donde)
<br>c) V (Esta demostrada en algun lado, pero no me acuerdo donde)


==Ejercicio 06==
==Ejercicio 09==
==Ejercicio 10==
Como Γ1∪Γ2 es insatisfacible, por compacidad existe Γ0 <math>\subseteq</math> Γ1∪Γ2 finito e insatisfacible. Este conjunto tiene que tener por lo menos una formula de Γ1 y una de Γ2. Si no, serıa satisfacible. Si llamamos α1,..,αn a las formulas de Γ1 ∩ Γ0 y β1,..,βm a las de Γ1 ∩ Γ0, podemos hacer α = α1 ٨..٨ αn y β = β1 ٨..٨ βm. Es claro que β ε C(Γ1) y que β ε C(Γ2). Ademas, α ٨ β es una contradiccion. Pero α ٨ β ≡ ¬(¬α ٧ ¬β) ≡ ¬(α → ¬β), de lo cual podemos concluir que (α → ¬β) es una tautologia


<br>c<=>b) Trivial (uno es el reciproco del otro)
==Ejercicio 11==
 
<br>a->c) Γ es insatisfacible ->
* Γ|=α -> <math>\exists</math> Γ0 <math>\subseteq</math> Γ tq Γ0|=α
* Γ|=¬α -> <math>\exists</math> Γ1 <math>\subseteq</math> Γ tq Γ1|=¬α
-> Γ0 U Γ1 |= α y Γ0 U Γ1 |= ¬α -> Γ0 U Γ1 es insatisfacible
 
<br>c->a) <math>\exists</math> Γ0 finito insatisfacible tq Γ0 <math>\subseteq</math> ΓU{¬α}. Se tienen estos casos:
* 1. Γ0 <math>\subseteq</math> Γ insatisfacible -> Γ0|=α
* 2. Γ0 = {¬α} insatisfacible -> ¬α es contradiccion -> α es tautologia -> Γ0|=α
* 3. Γ0 <math>\subseteq</math> Γ1U{¬α} insatisfacible -> Γ1|=α
 
==Ejercicio 07==
Como Γ1 U Γ2 es insatisfacible, por compacidad existe Γ0 <math>\subseteq</math> Γ1 U Γ2 finito e insatisfacible. Este conjunto tiene que tener por lo menos una formula de Γ1 y una de Γ2. Si no, serıa satisfacible. Si llamamos α1,..,αn a las formulas de Γ1 ∩ Γ0 y β1,..,βm a las de Γ2 ∩ Γ0, podemos hacer α = α1 ٨..٨ αn y β = β1 ٨..٨ βm. Es claro que α ε C(Γ1) y que β ε C(Γ2). Ademas, α ٨ β es una contradiccion. Pero α ٨ β ≡ ¬(¬α ٧ ¬β) ≡ ¬(α → ¬β), de lo cual podemos concluir que (α → ¬β) es una tautologia
 
==Ejercicio 11 (¿?)==
<br>Sea Γ' <math>\subseteq</math> Γ finito. Veamos por induccion en su cantidad de elementos que es satisfacible. Si #Γ' = 1, sabemos que es satisfacible pues consta de una sola contingencia. Supongamos que todo Γ' de menos de n elementos es satisfacible. Sea Γ' con n elementos. Entonces, Γ' = {α} U Γ" (con α <math>\notin</math> Γ"). Sea v una valuacion que satisface a Γ" (existe por HI). Sea w una valuacion que satisface a α. Construimos v' como sigue. En las variables de α, da lo mismo que w. En las demas variables, da lo mismo que v. Esta valuacion satisface a Γ'. Entonces, como todo subconjunto finito es satisfacible, Γ es satisfacible (por compacidad).  
<br>Sea Γ' <math>\subseteq</math> Γ finito. Veamos por induccion en su cantidad de elementos que es satisfacible. Si #Γ' = 1, sabemos que es satisfacible pues consta de una sola contingencia. Supongamos que todo Γ' de menos de n elementos es satisfacible. Sea Γ' con n elementos. Entonces, Γ' = {α} U Γ" (con α <math>\notin</math> Γ"). Sea v una valuacion que satisface a Γ" (existe por HI). Sea w una valuacion que satisface a α. Construimos v' como sigue. En las variables de α, da lo mismo que w. En las demas variables, da lo mismo que v. Esta valuacion satisface a Γ'. Entonces, como todo subconjunto finito es satisfacible, Γ es satisfacible (por compacidad).  


<br>Si no queremos usar compacidad, vemos directamente que Γ es satisfacible. Para cada elemento αi hay una valuacion vi. Construimos la valuacion v que es igual a cada vi en las variables de αi, y 0 en las variables que no aparezcan en Γ. Esta bien definida por las intersecciones vacias. v satisface a Γ.
<br>Si no queremos usar compacidad, vemos directamente que Γ es satisfacible. Para cada elemento αi hay una valuacion vi. Construimos la valuacion v que es igual a cada vi en las variables de αi, y 0 en las variables que no aparezcan en Γ. Esta bien definida por las intersecciones vacias. v satisface a Γ.


==Ejercicio 09==
==Ejercicio 12==
Supongamos que ninguna formula de la forma α1 ٧...٧ αn sea tautologia. Esto es lo mismo que decir que ninguna formula de la forma ¬α1 ٨ ... ٨ ¬αn no es contradiccion. Pero esto ultimo es lo mismo que decir que todo subconjunto finito de negaciones de formulas de Γ es satisfacible. Entonces ¬Γ = {¬α, α ε Γ} es satisfacible. Entonces, existe v valuacion tal que v(¬α) = 1 para todo α en Γ. Esto contradice la hipotesis de que v satisface al menos una formula de Γ. Entonces, tienen que existir finitas formulas α1, ... , αn tales que su disyuncion es una tautologia.
==Ejercicio 13==
 
==Ejercicio 10==
Recordemos que {P} |= Q sii (P → Q) es una tautologia. Y esto tambien es equivalente a que [P] <= [Q]. Con esto en mente, supongamos que Γ |= γ. Entonces, por compacidad, existe un subconjunto finito Γ0 = {α1, ... , αn} de Γ tal que {α1, ... , αn} |= γ . Miremos el cociente finito Γ0/ ≡. La hipotesis de que α → β es tautologia o β → α es tautologia se puede traducir en que este cociente se puede ordenar totalmente. Sea [α] su primer elemento. Es claro que todos los elementos de [α] son consecuencia de α. Los elementos de clases mayores tambien, pues se tiene que α → β es tautologia para toda β que este en una clase [P] tal que [α] <= [P]. Entonces, todo Γ0 es consecuencia de α. Luego, {α} |= γ .  
Recordemos que {P} |= Q sii (P → Q) es una tautologia. Y esto tambien es equivalente a que [P] <= [Q]. Con esto en mente, supongamos que Γ |= γ. Entonces, por compacidad, existe un subconjunto finito Γ0 = {α1, ... , αn} de Γ tal que {α1, ... , αn} |= γ . Miremos el cociente finito Γ0/ ≡. La hipotesis de que α → β es tautologia o β → α es tautologia se puede traducir en que este cociente se puede ordenar totalmente. Sea [α] su primer elemento. Es claro que todos los elementos de [α] son consecuencia de α. Los elementos de clases mayores tambien, pues se tiene que α → β es tautologia para toda β que este en una clase [P] tal que [α] <= [P]. Entonces, todo Γ0 es consecuencia de α. Luego, {α} |= γ .  


[[Category:Prácticas]]
[[Category:Lógica y Computabilidad]]
Ten en cuenta que todas las contribuciones a Cuba-Wiki pueden ser editadas, modificadas o eliminadas por otros colaboradores. Si no deseas que las modifiquen sin limitaciones, no las publiques aquí.
Al mismo tiempo, asumimos que eres el autor de lo que escribiste, o lo copiaste de una fuente en el dominio público o con licencia libre (véase Cuba-Wiki:Derechos de autor para más detalles). ¡No uses textos con copyright sin permiso!

Para editar esta página, responde la pregunta que aparece abajo (más información):

Cancelar Ayuda de edición (se abre en una ventana nueva)

Plantilla usada en esta página: