Diferencia entre revisiones de «Práctica 11: Problemas P y NP (Algoritmos III)»

De Cuba-Wiki
Línea 49: Línea 49:
==Ejercicio 11.09:==
==Ejercicio 11.09:==
<br>a)Falso
<br>a)Falso
 
<br>b)Si el problema de decision Y esta en P y X <=p Y, entonces el
<br>b) Si el problema de decision Y esta en P y X <=p Y, entonces el
problema de decision X esta en P.
problema de decision X esta en P.
<br> Demostracion:
<br> Demostracion:
<br> Sea p el polinomio que acota la complejidad en tiempo del algoritmo de transformacion, y q el polinomio que acota la complejidad del algoritmo polinomico
<br> Sea p el polinomio que acota la complejidad en tiempo del algoritmo de transformacion, y q el polinomio que acota la complejidad del algoritmo polinomico
Línea 62: Línea 60:
<br> Por tanto, la cantidad total de trabajo para resolver A es como mucho p(n) +
<br> Por tanto, la cantidad total de trabajo para resolver A es como mucho p(n) +
q(p(n)), que es un polinomio en n.
q(p(n)), que es un polinomio en n.


<br>c)
<br>c)
<br>d)
<br>d)
<br>e)
<br>e)
<br>f)Verdadero
<br>f)Verdadero


Línea 75: Línea 69:
<br>1. esta en NP, y
<br>1. esta en NP, y
<br>2. para algun problema NP-completo B, B <=p C.
<br>2. para algun problema NP-completo B, B <=p C.
<br>Demostracion:
<br>Demostracion:
<br>  Por ser B NP-completo, para cualquier problema A en NP, A <=p B.
<br>  Por ser B NP-completo, para cualquier problema A en NP, A <=p B.
Línea 84: Línea 77:
<br> (Hint: Ver 11.8)
<br> (Hint: Ver 11.8)
<br> Los dos problemas pueden ser NP-Completos, ya que por reducibilidad la caracteristica de un problema NP-Completo es que se puede reducir a cualquier otro problema NP.
<br> Los dos problemas pueden ser NP-Completos, ya que por reducibilidad la caracteristica de un problema NP-Completo es que se puede reducir a cualquier otro problema NP.
<br>Con lo cual, un problema NP-Completo se puede reducir a otro Problema NP-Completo(Ej:SAT, es la semilla para ir encontrando problemas NP-completos )  
<br> Con lo cual, un problema NP-Completo se puede reducir a otro Problema NP-Completo(Ej:SAT, es la semilla para ir encontrando problemas NP-completos )  





Revisión del 02:21 30 nov 2006

Ejercicio 11.01:


a) Se puede hacer en O(n log n) -> esta en P
b) Se puede hacer con DFS en O(n^2) -> esta en P
c) Se puede hacer con DFS en O(n^2) -> esta en P

Ejercicio 11.02:

Vale porque la composicion de reducciones polinomiales es una reduccion polinomial

Ejercicio 11.03:

Ejercicio 11.04:

Ejercicio 11.05:


a)
b)
c)

Ejercicio 11.06:

Ejercicio 11.07:


a)Verdadera
b)Verdadera
c)No se sabe
d)Falso
e)
f)
g)Falso





Posted By Alejandro

Ejercicio 11.08:


ES cierto. Justamente la relacion de reducibilidad dice: Si existe un algoritmo de transformacion polinomico del problema de decision A en el problema de decision B, el problema A es reducible polinomicamente al problema B. Lo denotamos: A <=p B.


Ademas sabemos que un problema B es NP-completo si:
1. esta en NP, y
2. para cualquier otro problema A en NP, A <=p B.


Ya que existe una transformacion polinomica para reducir el algoritmo X a Y, de igual forma Y a X.
Con lo cual , llamemos A=X, B=Y, entonces se cumple que X <=p Y, luego
Sea A=Y,B=X, entonces se cumple que X <=p Y.


Fin
Posted By Alejandro

Ejercicio 11.09:


a)Falso
b)Si el problema de decision Y esta en P y X <=p Y, entonces el problema de decision X esta en P.
Demostracion:
Sea p el polinomio que acota la complejidad en tiempo del algoritmo de transformacion, y q el polinomio que acota la complejidad del algoritmo polinomico para B.
Supongamos que tenemos una instancia para A de tamaño n.
Como el algoritmo de transformacion da como mucho p(n) pasos, el tamaño de la instancia del problema B es como mucho p(n).
El algoritmo para B realiza como mucho q(p(n)) pasos.
Por tanto, la cantidad total de trabajo para resolver A es como mucho p(n) + q(p(n)), que es un polinomio en n.


c)
d)
e)
f)Verdadero


Un problema C es NP-completo si
1. esta en NP, y
2. para algun problema NP-completo B, B <=p C.
Demostracion:
Por ser B NP-completo, para cualquier problema A en NP, A <=p B.
• La reducibilidad es transitiva. Por tanto, A <=p C.
• Ya que C esta en NP, concluimos que C es NP-completo.


g)Falso
(Hint: Ver 11.8)
Los dos problemas pueden ser NP-Completos, ya que por reducibilidad la caracteristica de un problema NP-Completo es que se puede reducir a cualquier otro problema NP.
Con lo cual, un problema NP-Completo se puede reducir a otro Problema NP-Completo(Ej:SAT, es la semilla para ir encontrando problemas NP-completos )




Posted By Alejandro

Ejercicio 11.10:


a)Verdadero
Ya que los problemas NP-Completo NP.


b)Falso
No esta demostrado que NP=NP-Hard,
Si, que NP-CompletoNP-Hard.
Habria que probar que todos los Problemas NP-Dificiles se resuelven en tiempo polinomial(Lo veo poco probable).


c)




Posted By Alejandro

Ejercicio 11.11:


a)
b)
c)
d)Verdadero:
Si PNP Entonces NP-Completo NP
Y P NP , pero P NP-Completo



e)
f)



Posted By Alejandro

Ejercicio 11.12:

Ejercicio 11.13:


a)
b)
c)(Preguntar)
Primero habria que verificar si es NP-Completo, luego si esto sucede, se podria reducir usando SAT, para resolver TSP.




Posted By Alejandro

Ejercicio 11.14:


a)
b)
c)

Ejercicio 11.15:

Ejercicio 11.16:

Ejercicio 11.17:


a)
b)

Ejercicio 11.18:

Ejercicio 11.19:

Ejercicio 11.20:

Ejercicio 11.21:


Solo serviria para ver que no me voy a matar buscando una solucion polinomial para el algoritmo(ya que es poco probable).
A lo sumo busco una buena heuristica para que me de una solucion aproximada.






Posted by Alejandro

Ejercicio 11.22:


a) Entonces estaria probando que los algoritmos np son polinomiales.
Si pudieramos mostrar que un problema NP-completo cualquiera está en P, podríamos concluir que P = NP.


b)
(Consultar con los ayudantes)
Entonces estaria demostrando que ese problema no tiene solucion polinomica.


Aunque, si este fuera NP-Completo tambien demostraria que todos los NP-Completos no tienen solucion polinomica.





Posted By Alejandro

Ejercicio 11.23:


a)
b)