Ej. 1 (17/07/2023)	de nojas choregadas (sin enunciado):
☐ El examen se aprueba con 60 puntos.	Ej. 3 & Ej. 4 7 Nota 4 9
Resolver los ejercicios en hojas separadas.	Justificar todas las respuestas
☐ Completar nombre en las hojas.	Puede hacerlo citando resultados de la teórica o la
Completar LU y nombre en el enunciado.	práctica. Para ejercicios de la guía, consulte.
nombre en el enunciado.	

Ejercicio 1 (24 puntos). Sea $A \in \mathbb{R}^{n \times n}$ una matriz tal que $A^2 = I$.

- a) (5 puntos) Calcular los posibles autovalores de A. ¿Puede A tener un único autovalor?
- b) Suponga además que A es triangular superior.

- i) (5 puntos) Demostrar que si n=2 entonces A es diagonal. Follo
- ii) (6 puntos) Probar que $w = \begin{bmatrix} b \\ 2c \end{bmatrix}$ es autovector de A, siendo $A = \begin{bmatrix} T & b \\ 0 & c \end{bmatrix}$ con $T \in \mathbb{R}^{(n-1)\times(n-1)}$, $b \in \mathbb{R}^{(n-1)} \ y \ c \in \mathbb{R}.$
- c) (8 puntos) Demostrar por inducción que toda A triangular superior tal que $A^2 = I$ es diagonalizable. **Ejercicio 2** (28 puntos). Sea $A \in \mathbb{R}^{n \times n}$ diagonalizable con autovalores $\lambda_1, \ldots, \lambda_n$, ordenados de mayor a menor según su valor absoluto, y luego según su signo¹, y $\sigma_1, \ldots, \sigma_n$ sus valores singulares, ordenados de mayor a menor. Para cada uno de los siguientes casos, compare los autovalores y los valores singulares $\det Ay$ \det una descomposición SVD utilizando, si es necesario, las matrices dadas por la diagonalización:
- a) (5 puntos) Si A es ortogonal;
- b) (7 puntos) Si A es antidiagonal (o sea que, fuera de la diagonal que va de $(A)_{n1}$ a $(A)_{1n}$, tiene ceros);
- c) (8 puntos) Si A es simétrica;
- d) (8 puntos) Si A es simétrica e idempotente.

Ejercicio 3 (26 puntos). Sea $\alpha \in \mathbb{R}$ tal que $0 < \alpha < 2$ y A la matriz:

$$A = \begin{pmatrix} 6 & 0 & \alpha + 1 \\ 0 & 2 & \alpha \\ -\alpha & 0 & -1 \end{pmatrix}$$

- a) (13 puntos) Probar que el método de Jacobi converge.
- b) (13 puntos) Probar que el método de Gauss-Seidel converge.

Ejercicio 4 (22 puntos). Sea $A=U\Sigma V^T$ una descomposición SVD de $A\in\mathbb{R}^{m\times n}$ con $rg(A)=r,\,b\in\mathbb{R}^m,$ u_1, \ldots, u_m las columnas de U y v_1, \ldots, v_n las columnas de V. Demostrar que:

a) (12 puntos)
$$\min_{x \in \mathbb{R}^n} ||Ax - b||_2^2 = \sum_{i=r+1}^m (u_i^t b)^2$$

b) (12 puntos) La solución de cuadrados mínimos x^* tal que $||x||_2$ es mínima es: $x^* = \sum_{i=1}^{r} \frac{u_i^t b}{\sigma_i} v_i$

¹Por ejemplo, si los autovalores son -2, -1, 1, 2 entonces $\lambda_1=2$, $\lambda_2=-2$, $\lambda_3=1$, $\lambda_4=-1$