Algebra Lineal

Segundo recuperatorio del primer parcial - Primer Cuatrimestre 2007

Nombre y apellido	LU	Carrera	1	2	3	4	-5	6
					. ur			

Problema 1: Sea $A \in K^{n \times n}$ una matriz y sea $B \in K^{n \times n}$ la matriz que se obtiene rotando 90 grados (en sentido horario) a la matriz A. Calcular el det(B) en función del det(A).

Problema 2: Sean $f_0, \ldots, f_n \in K[x]$ polinomios de grado menor que n y sean $a_0, \ldots, a_n \in K$. Probar que

$$\det \begin{bmatrix} f_0(a_0) & \cdots & f_n(a_0) \\ \vdots & & \vdots \\ f_0(a_n) & \cdots & f_n(a_n) \end{bmatrix} = 0.$$

Problema 3: Sean $A, B \in K^{n \times n}$ tales que A + B = I y rg(A) + rg(B) = n. Probar que A y B son proyectores.

Problema 4: Sea $A \in \mathbb{F}_2^{n \times n}$ la matriz que tiene $\overline{0}$ en la diagonal y $\overline{1}$ en todos los demás iugares. Calcular rg(A).

Problema 5: Sea $A \in \mathbb{R}^{n \times n}$. Probar que A es un proyector si y solo si 2A - I es idempotente (es decir, es inversa de si misma).

Problema 6: Sean V₁, V₂, V₃, W₁, W₂ y W₃ espacios vectoriales. Supongamos que tenemos el siguiente diagrama de transformaciones lineales:

$$V_1 \xrightarrow{a} V_2 \xrightarrow{b} V_3$$

$$\downarrow f_1 \qquad \downarrow f_2 \qquad \downarrow f_3$$

$$W_1 \xrightarrow{c} W_2 \xrightarrow{d} W_3$$

donde a y c son monomorfismos, b y d son epimorfismos, Ker(b) = Im(a), Ker(d) = Im(c), $f_2 \circ a = c \circ f_1$ y $f_3 \circ b = d \circ f_2$. Probar que si f_1 y f_3 son monomorfismos (resp. epimorfismos), entonces f_2 también es monomorfismo (resp. epimorfismo).