ANALISIS MATEMATICO I - MATEMATICA I

ANALISIS II para computólogos - etcétera

- Apuntes* de la Teórica de Pablo De Napoli-

VERANO 2017

* Tomados por Daniela

Analisis II

Pablo De Nápoli - poenapo@dm. uba.ar

. 1º PARCIAL

. 2' parcial

Jueves 23/2 11hs.

Vieines 17/3 11hs.

· Rec 1º parcial Sabado 25/3 9:15 hs

Sabado 1/4 9:15 ho . Rec 2°porcial

BIBLIOGRAFIA:

· Li bro de Gabriel Lacotonda

· Indroducción al calculayal Flora análisis matemática, de R. Garent

· Apostol - Norrego - Ray Postor-ok.

NUMEROS REALES

. N= {1,2,3,4,...} -> Números restorales. No = INU {0}

. Z = S...-3,-2,-1,0,1,2,3,...} Nomeros enteros ~ de preden restor sin restricciones

. Q= { P/P,q ∈ 76, q +0} = Números racionales ~ Le pueden di máin

II: Números macionales.

d=12+12=2 = d= VZ

. R= QUI ~ Números ceales.

TEOREMA: No existe d= P & Q (Pig &Z, q+0) talque d= 2 (VE esinacional)

Podemis suponer Pirreducible

Dem: $(\frac{p}{q})^2 = \frac{p^2}{q^2} = d^2 = 2$ \Rightarrow $p^2 = 2q^2$

⇒ p² espar ⇒ p espar ⇒ p=2 p con p∈ TL

(2p) = 2 q2 => 4p2=2q2 => 2p2=q2 => q2 es par => q es par

Esto es ABSURDO pues entonces P ho seria receducible.

Axioma 1: Propiedad associativa. ta, b, ce R, (a+b)+c = a+(b+c) Axioma 2: Propiedad conmutativa tabeR, atb=b+a AXIOMA 3: Existencia del neutro. FOER HAER ato= o+a = a AXIOMA 4: Existencia del inverso aditivo taER 3-aER: a+(-a)-(-a)+a=0. = (a-b=a+(-b) Axioma 5: Asociativa del producto: + a, b, c ∈ R, (a.b). c = a. (b.c) AXIOMA 6: Conmutativa del producto tab∈R, ab=b·a Neutro del producto. AXIOMA 7 : 31 CR . Hack a. 1=1.a = a Imverso multiplicativo AXIOMA 8: tack a = 0 =] a': a.a'= a'.a=1 = a:b= a.b' Propiedad distributiva. Axioma 9: ta,b, c e R, a (b+c) = a.b+ a.c (a+b).c = a.c+ b.c. 5: Relación de orden en R (en sentido amplio). Axioma 10: Propieded reflexive: tael, aca Axioma 11: Propiedad antisimetrica: tabeir (acbabca > a=b) Axioma 12 : Propiedad transitiva: ta, b, c e R (a66 1 bcc =) a cc) alb @ a <b 1 a +b a>b (a6b) Axioma 13: orden total: tabe R (acb v b(a v a=b)

ECHA

Axiomas de compatibilidad:

.Axioma 14: Compatibilidad con la suma:

Ha, b, c ∈ R (a 6 b = a + c 6 b + c)

Axioma 15: Compatibilidad con el producto

a,b ∈ R (a ≤ b 1 C>0 ⇒ a · c ≤ b · c)

Def: See ACIR on conjunto:

· Un numero CERes una cota superior de AsitaEA, a <c

· Un conjunto de dice acotado superiormente di admite alguna esta superior.

Def: Un numero SEIR es el supremo del conquito A si:

i) Ses una cota superior de A

ii) si s'es cha cota superior de A > 555 (el supremo es la menor de las cotas superiores de A)

Obs: En general supremo ruo es la cuismo que maximo

Def: Un rumano ao es el máximo de un cargunto A si:

i aseA

ii. taEA a Lao

Obs: Li Ses el supremo de A -> S es el moximo de A sigsolo si SEA.

[a,b]= {xER/a <x <b} -> intervalo cerrado

Supremode [aib] = b = maximo de [aib]

[a,b)={xeiR/acxcb}

(a,b) = {x ∈ R/a <x <b} -> intervalo abierto.

(a,b]= (xER/acx6b)

Supremo de (a,b)= b → no tiene miximo.

. Axioma 16: Axioma de completitud.

. Todo conjundo A C IR ha aració y acatado superiormente tiene supremo.

Ejemplo: A = { X \in \alpha / X > 0 x X 2 } Solamos que A es acatodo Superiormente si X EA => X2L2 => X2L4=22 y como X>0 => X < 2 → 2 es una cota superior de A A = (0, 52) n da Si pieuso ACR => 35= Sup(A) S = VZ (el axiona del supremo ano asle en a) Def: sea ACIR · Un ruinners c∈ R es una cota inferior de A si ta ∈ A, c ≤a · Un conjunto ACIR es acotado inferiormente si admite alguna cota inferior. Def: Un numero i e IR es el infimo del conjunto A C IR si 1- i es una coto inferior de A 11. Si i es cota inferior de A ⇒ i (il infirmo es la suayor de las cotas inferiores) Tecrema: todo conjunto ACIR lo cracio y acotado inferiormente tiene infimo de la Dem: a6b = -a2-b Inf(A) = - Sup (-A) -A = \ -a/a = A} $S: Sup(A) \Leftrightarrow \begin{cases} 1-S & \text{es esto imperior cle } A \\ 2! & \text{HEDO } \exists \text{ } \alpha_E \in A / \text{ } S - \text{E} \setminus \alpha_E \in S \end{cases}$ Dem: 1,2) => 1,2') como EDO 5-EL 5 por 2) S-E Mossima Coda superior de A ⇒ 3 a E E A dalque 5-Ela #4 Como a EA, a E (5 Par 1) 1,2') ⇒ 1,2) dea 3 una cota superior de A que s < 3. Simponeuro que lus, 5)3 => E= 5-520 >> po 2') 7 aEEA/5-E (aE (5 ABSURDO, pues 5 es una coto superior 5-(5-3) (a ≥ 5 < a € Luego SES

l-ELanLl+E

oi=inf(A) \Leftrightarrow $\begin{cases} 1. \text{ i es and eable inferior de A} \\ 2. \text{ $\forall ϵ so existe $\alpha_{\epsilon} \in A$/$ i $\equiv \equiv

[Una sucesión de normeros reales es una función a: IN -> IR; a(n) = an

a, a, a, a, ..., an

an -> l an eonverge a l

l= lim an les el limite de an

Def: an > 1 (=> + E>0] no = no (E) /s + +n > no entonces |an-1 | < E

Reformulación de las propiedades del Supremo:

5= sup (A) € {1. S es codo superior de A} 2" Funo sucesión (an) ⊆A/an → S

Dem: 1,21) => 1,2"): the IN consider E= 1

Por 2") existe 5-1 (an (5) 5-3/n 5 $\Rightarrow |\alpha_n - s| < \frac{1}{h} \Rightarrow |\alpha_n \rightarrow s|$

1,2") > 1,2'): Supongo deugo an > 5. Por 1) and 5 th

sin≥no(E), lan-slLE, S-E Lan LS

Reformulación de las propiedades del infinio.

 $i = \inf(a) \Leftrightarrow \begin{cases} 1 - i = s \text{ on a coso in ferior de } A \\ 2 - \exists a_n \in A / a_n \to i \end{cases}$

SUCESIONES

Def: Uno sucesión (an) de animeros reales es una función a: IN -> IR, a(n)=an Det les (an)ons sucesión, lER. Decimos que an loque l= lim an (les el Limite de an - o an converge a l) si para tado E>0 exox un no= no (E) EIN dal que si n>no enfonces lan-lKE → l-E(an < l+E | l an

DESIGNALDAD TRIANGULAR.

1x+y1 < 1x1+141

|X-Y| > |X|-|Y|

1x-y1 > 1x1-1y1

Obs: El limite de una Sucasión (an), si existe, es cónico.

Supongamos que:

 $a_n \rightarrow l$ $\Rightarrow |l-l'| = |(l-a_n)+(a_n-l')| \leq |l-a_n|+|a_n-l'|$ $\langle \mathcal{E} + \mathcal{E} = 2\mathcal{E}$ $\Rightarrow |n \geq n_0 \text{ for } n \geq n_0 \text{ x for } n_0, n_0'$

12-2'/2 => [l=l'] . A: n = m = x (no, no') (+E)

Exemplo a an = 1 l=0

PROPIEDAD DE ARQUÍNEDES: NCR Aus está acatado.

Dado XER existen EN tol que n>X

Dem: Si IN estruiera acosado Superiormente > tendría un supremo

Sea S= sup(IN) n (S +n pero existe no EN/S-1 < no (S)

⇒ 5 < no+1. ABSORDO. El absurdo proviere de Superiormente → acotados
superiormente → aco lo esta. Signieus con a. an = 1, 1=0

lan-0|= 1 + 1/2 € n>1/2

para todo n>no. EntonGo | n-0 | LE sin>no, a sea 1-0

Def: (an) es una suesión acotada hi existen dos números talesque [M = Cota cuferior => m, M ER. HMEN m LandM Obst. basto pedinque analys si nono con un no Fijo. Obs2- Es equinalent pedinque lan (M +n Exemple: (-1) ES ACOTADA PELO NOESCONTEGENTE TEOREMA: Si (an) es convergente (an-sl, LER; FINITO!) entones (an) es acotodo (No vale la reciproca). Den: Pa Aipotesis and > dado E= 1, Ino/ lan-4/21/1/ non ay l-1 l l+1 ax si n>10 |an | 4 |an - 2 | + |2 | 4 |2 | + 1 Lea H= MAX (11/+1, 1a,1, 1az1, ..., (anot1) => lank M + n -M 6 an LM => (an) es Acomba. PEOPLEDAD. ("cere x acedade") & and on (bn) accordada > an bn - 0 Dem: Ibn/CM +n con M>0. dado E>O lan=lan-ol (E si n> no => |an. bn = |an . | bn (& H = E, sin) no ⇒ +E>O an.bn→O. Def: (an) es monotona creciente di to an Canto (si an Lann to se dice estrictamente creciente) (an) es monótone decreciente si th, and ann (si an > ann to se dice estrictamente decreciente) (an) es monotons sies ruono tono crecente o ruono tono decreciente

	. 5012		FECHA
Tec	DEMA: Si (an) es monstona y acet	ada, es convergente	(Lieus linuite finito)
	1° di (On) es monstons crecente	a la como la completa de la completa del completa de la completa del completa de la completa del la completa de la completa della completa della completa de la completa della completa de	
	2° - Si (an) es auono tomo decreacent	gacodada > Lim an =	inf fany
De	m: Horgaeur el caso 1° (el 2.		
	Si (an) es avaristoria creciente y acest	$ada \Rightarrow A = \{a_n / n \in \mathbb{N}\}$	NGCIR acatada
	Per al axioma de completitud exin	k s= sup(A) ∈ IR	S-8 @.
	1º) an (S then, 2°) Dado E>0	3 no EN/S-E Cano	LS Cano S
	1: n>no, ano (an =) SECON (S)	> an-5/28 tn>no =	$a_n \rightarrow S$
Eg:	2		
este exercícia	Vouces a ver que an es huoriste	ma crecient of Acotrat	м.
sto en el librocle Rey	$Q_n = \sum_{k=0}^{n} \binom{n}{k} \frac{1}{n^k}$	7	Binomis de Newton
Pastor. (?)	$= \underbrace{\frac{1}{k \cdot 0}}_{k \cdot 0} \underbrace{\frac{1}{k \cdot 1}}_{k \cdot 1} \underbrace{\frac{(n-1)}{n}}_{n} \underbrace{\frac{(n-2)}{n}}_{n} \underbrace{\frac{(n-k+1)}{n}}_{n}$	the k	(n) ak ba-k
levisar porque no entendí			
un Choto.	$= \frac{2}{\lambda} \frac{1}{n} \cdot 1 \cdot \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdot \cdot \cdot \left(1 - \frac{k}{n}\right)$	$\binom{k}{k} = \frac{k!}{k!}$	n.k) = (n-1)(n-2)-(n-k
	lan Lanss to		2.3.4
	05KEN 1-1 1-1	$\frac{1-\frac{1}{n}}{n}$ $\frac{1}{n+1} = \sum_{k=0}^{n+1} \frac{1}{k!} \left(\frac{1}{n}\right)$	
		7 AH1 = K=0 K! ($(\frac{1}{n+1})(\frac{1-2}{n+1}) \cdot (\frac{1-\frac{k-1}{n+1}}{n+1})$
	an (I 1 1	K= 1.2.3 > 2.2	Z Z = Zk. + K ≥ 2
	$a_{n} \leq \frac{1}{2} \leq \frac{1}{2} \leq 1$ $\leq 1 \leq \frac{1}{2^{k-1}} \leq 1 + \frac{1}{2^{k-1}} \leq $	= 1 + 1 = 1 + 2 = 3	=D Qn 63
	\$\frac{1}{ko} \frac{7}{k}		
	14 x + x2 + x3++ X = 5 x x	$\frac{x^{k+1}-1}{x-1} \text{ si } x \neq 1$	
	$= \sum_{b=0}^{k} x^{b}$ $\sum_{b=0}^{k} x^{b} = \lim_{b \to +\infty} \sum_{b=0}^{k} x^{b}$	1 - = 1	
	Seise zeométics.		1×141
,		1-x	

TEOREMA DE BOIZMO WEIERSTRASS: Todo Sucesión acodada de Muinveros reales tiene una Sub- Sucasion Convergent. LEMA DE LOS PUNTOS CURBRES: Todo sucesión dan) de Múnuero restes biene cua subsucesión Monotona. Def: Un indice KEN se dice un punto aumbre de (an) si an Lox An>k Seo C el en pento de todos la puntor embres de (an): C= { KEN / Yn>k anlak } CASO1: Ces infinito, C= 1 1, nz, n3, ..., nx, ... ank es estictamente decreciente, (nk) es una sucestón infinita ans ans ans > ank > ... nx nz (nx (nk (... (nk (... Caso 2: Cas finite > In todak In No es punto cumbre. En particular, no no es un punto cumbre => 3 n2>n1/an2 >any Tornando K=nz hemos que nz dam poco es un punto cumbre => 3 m3 >n2 tol que an3 > anz Tous K=n3 = n3 aus os punto ambre => 7 n4/any ans. Amorgunendo por meducción) construyo ana subsucarión (ank)/anun > ank Dem (del feorema): sea (an) acostada. Por el luna de la punto cumbres, existe una subsucción (ank) ruono tomo. Notemos que (ank) es acotada pres (an) lo es. Como (ank) es monó tous y acotado - es convergente.

ESPACIOS VECTORIALES

$$\mathbb{R}^d = \left\{ (x_1, x_2, \dots, x_d) \middle| x_j \in \mathbb{R} \text{ para } 1 \leq j \leq d \right\}$$

R³: pel espacio enclídes
$$Y=(X,Y,Z)$$

$$(P_n)_{n\in\mathbb{N}}\in\mathbb{R}^d$$
; $P_n=\left(X_1^{(n)},X_2^{(n)},\ldots,X_d^{(n)}\right)$ $X_d^f\in\mathbb{R}$

$$P_n = \left(\frac{1}{n}, \frac{1}{2^n}\right) \longrightarrow (0, 0)$$

$$X_1^{(n)} = \frac{1}{n}$$
 $X_2^n = \frac{1}{2^n}$

· R es un espacio vectorial sobre IR

Def: Dado un vector P=(P1, P2, ..., Pd) ERd definituos su norma evolidea (longitud):

||P||= \|P_1^2 + P_2^2 + ... + P_d^2\|

```
DISTANCIA EN Rª
                         d (P,g) = 1P-911
                                  = V(P1-91)2+(P2-92)2+...+(Pd-9d)2
Det: Sea (Pn) una succesión de pundos en el espacio Rd, Pr=(Pi,P2,...,Pa), PjER
     L'MITE EN R' : decimos que Pn -> l= (ln., lo) ER & VE>0 existe l=lin Pn
     un no= no(E) EN talqueti n> no => 11Pn-11/6
                                                                         [x] = porte entera dex
Ejemplo: Pn=(1-1, 1) = R2, L=(1,0)
     dads E>0.
     \|P_{n}-L\|=\|(1-\frac{1}{n},\frac{1}{2^{n}})^{\frac{1}{n}}(1_{10})\|=\|(-\frac{1}{n},\frac{1}{2^{n}})\|=\|(-\frac{1}{n})^{2}+(\frac{1}{2^{n}})^{2}-\sqrt{\frac{1}{n^{2}}+(\frac{1}{2^{n}})^{2}}
              =\sqrt{\frac{1}{n^2} + \frac{1}{(2n)^2}} = \sqrt{\frac{1}{n^2} + \frac{1}{n^2}} = \sqrt{\frac{2}{n^2}} = \sqrt{\frac{2}{n}} < E
                                                               OLXCY
                                                                   X5 < Y2
                      0\left(\frac{1}{2n}\right)\left(\frac{1}{2n}\right)^2\left(\frac{1}{n^2}\right)
TEOREMA: doda una sucesión Pn = (Pn, P2, ..., 2") ERd, l=(l, l2, ..., ld) ER
     Endonces Pn > l Sig solo si Pj -> lj para todo 16 16 d
Dem: "Solo si" Supongamos que Pi -> lj tj, queremos protoco que Pa->l.
     Dado EXO, para cada je con 1/2 jéd, existe n; EN/P;-li/ (E 1 1) n;
     Toma no=mex (n, n2, ..., nie) entonces si n> no nole para todo 1 6 j 6 d
     ||Pn || = V(Pi-l)+ (Pz-lz)...+ (Pz-Lz)? ((E)2+(E)2+(E)2-(dz) = . E lugo? -)|
     falda la park "si"! su ponemos que Prode. que por li
     Si Perd Pil & IPH para hade j
                                                                                    me dom
    (P) = (P) + P22+ + P = P
                                                                                   Pero
                                                                                   copie todo
   Bado Eso ralemos que 7 au/1/2-11/2 E 2070
    1P5-1, = (Pn-1); | < 11Pn-11 4E
    endefinition Pin-lillEsinjno + j => Pin-li
```

NOTA

Ejemplos: 1- en R1=R: A = [a,6] = {x < R/a < x < b} A= (a,b)= { XER/a(X Lb) DA = fa, 63 A = [a, 6] 2 R'= R: B = (a, b) B= (a,b) DB= {a,6} B = [a,6] 3_ R'= R.

Aext = {XEIR/XCa V X>b} = (-00, a)U(b,+00)

As cernado, A no es cernado

(PARA PENSAR) Obs: Asabiento (Ac es cernado

$$\partial C = \{a, b\}$$
 Cours consider, pues $b \in \partial C$ pero $b \notin C$
 $\overline{C} = [a, b]$

Obs: Para enalquier conjunto: · A es abiento

(Ejercicio: Dem "todos los bolos cenados non conjuntos cenados).

```
Repaso Espacio Euclidão
   Ra= { P= (P, P2, ..., Pa) / P, e R para 16 j & n }; de IN: dimención.
   horma: ||P|| = /P1+P2+...+ P2
   distancia: d(p,q)= ||p-q||, p,q eRd
   (Pn) ERd, LERd:
   3> | 1-1 = N = N = N = OC3+ € 1-1
   B(p,r)= {qeRd/11q-p116r}
   Def: ACRd: Ass acotado ( ) I una bola B(p,r) con r>0/ACB(p,r) (Predo former
         => Fro/ tgeA ||g|| Cr
                                                                             QCB(OZ)
     Ejemplo: en R2: Q= {(x,y) / 1x/ <1, 1y/ <1}
                es acotordo
   Theo Sucesión (Pn) E Ros acotado ( A= Pn: nEN) es acotado
   TEORETA DE BOISAND-WEIERSTRASS EN Rd:
        Toda sucerión (Pn)E Rd acatada tiene una subsucerión convergente.
   Dem la liaceuro en el casa d=2; Pn=(xn, Yn). XnER, Yn ER
                         Por hipoterio, Pn es acotada == = 10/#n IPn/ LT
                        IXn < Pn => IXn < r } Tacuto (Xn) como (Yn) son
                         |Y_n| \le |P_n| \Rightarrow |Y_n| < r } successors acotados en \mathbb{R} \begin{cases} X_n \in (-r,r) \\ Y_n \in (-r,r) \end{cases}
        PREBORDED= (CXY)ER2/IX/CF, 14/KF)
        Como (Xn) os acotada en R, > Juna subsucción (Xnk) de Xn/Xnk le R (Por B-Wen R)
       Considero la sucesión (Ynx) es uma subsucesión de (Yn) - es acotada.
       Porker B-wen R=> Juna subsucesian (Ynx;) convergente: Ynx, -> lz ETK crando j -> +00.
                              X<sub>5</sub> (X<sub>6</sub>)
n<sub>3</sub>=6.
        (X) X2 X3 (X3)
                                                 4 Xnk, -> l, pues (Xnk) es
       \begin{array}{c|cccc} (Y_1) & Y_2 & Y_3 & (Y_4) \\ \hline n_{k_1} = n_4 = 1 & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}
                                                  lena subsucisión de (XAK)
        Xnk, -> l1 } -> Pnk; = (xnk; Ynk) -> (l1, l2) (horema de la close parada)
                      Listo Encontramos uno subsucessón convergente.
```

dos En d dimensones lay que repetir el precoso d veces: $\mathbb{R}^d = \left\{ (x_n', x_n) \middle/ x_n' \in \mathbb{R}^{d-1}, x_n \in \mathbb{R} \right\}$ $\stackrel{\times}{\leftarrow} \mathbb{R}^{d-1}$

Def: Un conjunto K ERd se dice compacto (Pa) EK se puede extruer and substrain (Pa) EK se puede (Pak) dal que I le Rd/Pak sely lek Corclaro Un conjunto K ERd os compacto signalos x K os canado y a cotado

Dem: "sdo si": Suponemus K es cernado y acabado. Veamos que es compacto;

Sea(Pn) CK. Como K es acotado → (Pn) es acotada.

Por el tronema de B-W Juna subsuasións convergente Por el ERd

Como K es cerrado, lek

Recordon: «Kos cerusdo (K=K

·lek Juna sucesión (9n) Ck/9n - l

"Si": Supongamos que k es esupacto. Cherenos verque es consdoy a cotado

· Si K mo fueroacotodo, paro cadan EMexistinio PriEK/ 11Pn 11>n

Endonces (Pn) no tiene Minigreus subsucerión convergent (Pros 1 P. 11 300)

· Absordo! -> lugo, k es acotado

· (Ai Prix fuera convergente -> (Prix) sería ocostado pero (Prix) -> O) VICLENTÍS IMO

Folta ver que K es cerrado. Si suponemos que K mo es cerrado > K + K >

⇒existelektal que l∉k (le ak pero l∉k)

Como lek, 3 ma sucesión (Pn) ⊆ K/Pn → l.

Como K es compacto existe una subsucción (Pnk)/Pnk - ZEK

Como Pn > l => Pnx > l = lpm por unicidad del l'imite.

Absordo pues (lek El absordo proviene de superen que k mo es

Ejemplo: A= S(X,Y)/X>04
es cernado pero no acododo

(n, 0) EA, nein

si (xn, yn) -> (li, li)

y xn > 0 +1 -> li >0

NOTA


```
FUNCIONES CONTINUAS
   Def: Sea f: DCRd --> Rm
         · fer continua (en D) ( fer continua en Xo + Xo ED
   Exemplo: f(x) = \frac{1}{2}; D = \{x \in \mathbb{R} / x \neq 0\}; f: D \to \mathbb{R}
            |f(x)-f(x_0)|=\left|\frac{1}{x}-\frac{1}{x_0}\right|=\left|\frac{X_0-X}{X\cdot X_0}=\frac{|X_0-X|}{|X|\cdot |X_0|} \left(\frac{\delta}{|X||X_0}\right)
          |X| = |X_0 - (X_0 - X)| \ge |X_0| - |X_0 - X| \ge |X_0| - |X_0| = |X_0|
           Sizo conel exicio.
           (8) S ( S = 28 (E -> pague S (E |xol2)
            Dado Expelipo of min ( 1xol ; Elxol 2
```

continua en D.

· l'es continua en un punto Xo ED si f (xo) esto definida y lim f(x) = f(xo) €> + E>0] 5>0/s xeDy ||x-x|| (3) => ||f(x)-f(x)|| < E Veamos que fes continua en D. Seo Xo ED (Xo +0) => 1x-Xo/Lo. 1 Xoto X Xoto Tengo que acotar x. considero la designaldad hiangular: Obs: En este ejemplo el d'depende del & pendo Xo (no es el Mismo para todos los Xo) >> + NO ES UNIFORMEMENTE CONTINUA OU D Del, Si al d'se puede elegir un dependient de Xo entouces fes uniformemente

Def: (in f(x) = 1 (>) + sucesion (Pn) dal que Pn > x y Pn + xo the entouces f (Pn) > 1 Carolario: f: DCR -> Rm; foo continua on Xo ED => + sucusión (Pn) ED de cumple que f(Pn) -> f(xo)

Ejemple: $f: \mathbb{R}_{+0} \to \mathbb{R}$; $f(x) = \frac{1}{x}$. $c \ni \lim_{x \to 0} f(x)$? $c \mapsto \lim_{x \to 0} f(x)$? Pn = 1 →0. f(Pn) = Seu (2TTn) = Seu 0 = 0 →0

 $P_n = \frac{1}{I + 2\pi n} \rightarrow 0 ; f(\widehat{P_n}) = den \left(\frac{II}{2} + 2\pi n\right) = den \left(\frac{II}{2}\right) = 1 \rightarrow 1$ Sen (X+ZH) = Sen X

Seu(x+2TTn)= Seux

Alinf(x). The esponder defininf(0)/f see continue en xo=0

Def: Lim f(x)=1 = +E>OJG>O +XED (OC||X-X-1|LG) ||f(x)-1||LE) Dem: Depongames que lin f(x)= l y sea (Pn) una succión dal que Pn > Xo of Pn + Xo. Quererus over que f(Pn) -> l Dado EDO. ses SDO el que le conosponde por la def de limite de forción (& XEDy ox HX-XOUSS → II FOX-LILLE) Como Pn -> Xo, 3 no=no(8)/ 1/2n-Xol/ (8 sin >no Como Pn + Xo, OCIIPn-Xoll Co. luego II f(Pn)-lILE +n >no => f(Pn) -> l E Suponeuros que para todo sucesión (Pn)ED Pn-Xon to Pn +Xo enforces f(Pn) > l. Quiano ver que line f(X)=1. Lo hacemos por el ABSURDO « Negaciones: $\sim (\forall x P(x)) \iff \exists x \sim (P(x))$ ~ (3xPK) (DXX E) $\sim (P(X) \Rightarrow Q(X)) \Leftrightarrow P(X) \land \sim Q(X)$ · Negación de la definisión de linuite. no os cuerto lim f(x)=l € ∃E>0 + 6>0 ∃ x € D (0< ||x-x0|| < S ~ ||f(x)-l || ≥ €) Es decin: ho es cuertoque lin fax=l equivale a decin que existe un E>O dal que paratolo d>o existim X=X(d) dal que O<11x-x011<d Pero sin em bongo Ifatell>E Considerando lo auterio, Continuamos con la demostración. Torus on= 1 (nen) Para coda una tengo X(ch)= Pr, que cumple OX 11 Pr-Xolk d= 1 1117(Pn)-111>E ABSURDO entances Pn -> Xo Porto hipótesios f(Pn) -> l. hego lim f(x)=1

TEOREMA DE BOLZANO: f: [a,6] -> IR es continue en [a,6]= [XER/a EXC6] Entoness, si (f(a) >01 f(b)(o) v (f(a)(on f(b) >0) => sea, si f(a). f(b) (0 ⇒exion Xo∈ (a,b) talque f(xo)=0. Obs: El Xo puede no ser único: Don: Suponemos que fa)>0 y f(b) (0 (si ho combiamos f por -f) Sea C= {X \in [a, b]/f(x) > 0}, Coo ho macio, a \in C. Cesta acotado Superiormente (CS[a,b] > 6 es una cota superior) Por el Axiona de completitud existe Xo= Sup(c). Querenos ver que f(xo)=0. Lema: (Las funciones continuas mantienenel signo en un entorno) 1. So f(x0)>0 entonces I d>0 tal que si xe[a, b]y |x-x0|(d => f(x)>0. 2- di f(x) Lo entono 350/ di XE [a,6] 1/X-Xo/(d) => f(x) Lo Dem del lema: 1. di f(x0) >0 sea €= f(x0) >0, sea d >0/1x-x1 Ld => |f(x)-f(x0)/LE f(x)=f(x)-(f(x)-f(x)) > f(x)-|f(x)-f(x)| > f(x)-E=f(x) >0. hego f(x)>0 1 |x-x0| (5. 2-si f(x)(0) -f(x)>0, -fos sta función continua, le aplico 1. 0) (x) = 0(x) - (x) x x 1/0< b E (= Continuamos con la dem del ferrema: Supongamos (por el ABSURDO) que f(x0) ≠0) → f(x0)>0 v f(x0) <0</p> Caso1:f(xe)>0: Por el lema 36>0/si |x-xo|26 y xe(a,6) =>f(x)>0 - turn observemos que Xo + b pues f (b) Los por lema 3 61>0/f(x) Los (b-d1, b) = CE[a,b-d] luego 6-5, soma cota superior de (> Xo= sup (c) < b- 5, 6. Sillamo X1= X0+d X1∈ [X0, X0+d) d x0-0 xono b => X1 LX0 F(X1) DO => X1EC => X1EC => X16X0 = Sup(c) => ABSURDO. classendo provino de suponer que f(xo) >0 luego, soto NO PUEDE PASAR.

FECHA

Casoz: f(x) Lo: entonas, de acuelta por el lema, 3 5 x/f(x) Los 1x-x0/Los Par Hipotesis, f(a) so, par el lema F oz >0/f(x) >0 six & [a, a+oz) Tomando X= a+dz, f(a+dz)>0 -> a+Jz e C=>0+dz (xo= sup(c) => a LXo (pues of >0) One Xo es el sepremo de C => 3 X EC/Xo-SZXZ Xo => f(x2)> Dues X2EC y por she Xo-X2/Lo entonces f(X2) LO ABSURDO! .. Doud fas he puede ser por how mi Auga ti as, dube ser $f(x_0) = 0$ Def: Un conjunto KC IRd se dice compacto si & sucerioù (Pn) CK Baxiste una subsucesión (Pnk) y un punto LEK dalque Pnk -> l Corolario del teorema de B-W: K es compacto (K es cerro do y acotado. An un dervalo cerrado en R [a,b] es compacto ma función TEOREMA DE WEIERSTRASS: Sea K & IRd compacto of f: K - IR Continua: 1. for acotada en K; 3 X, BER/ OX f(x) CB + XEK (la imacer de f. está acotado superiormento). 2. Dear m = inff(x); M= supf(x) (por 1 astor bien de finidos). endonces exister XI EK tales que f(XI) = m minimo de fen k XZ EK f(XZ) = M haj xmo de f en K O sea, falconza su ma ximo y minimo en K. Dem: 1 beautos que l'es acodada superionnente en K (o sea 7/6) MAND, THEN FPACK, I(PA)>n Como Kes compacto, => I ano subsuccesión (Pnk) dal que Pnk - l EK. Como fes contiamo = f(Pnk) -> f(l) ER. Persholado f(Pnk)>nk > f(Pnk) -> +00 ABSURDO. cel absurdo proviewede suponer + no acotado superiormente. Luego dibe ser lo

· Combiando f por -f se prueba que f esta acotada inferomiente.

NOTA

obs: fig Rd > Rm; Sifygson continues en Xo E Rd >

Composición de funciones:

Def: dif es continua en xo y ges continua en yo=f(xo),

entonces gof as continua en \$ Xo

$$h = g \circ f$$

 $f(x) = X^2$; $g(y) = sm Y$

DERIVADAS EN UNA VARIABLE

f: D ⊂ R → R, D un intervalo, Xo ∈ D° (Xo es interior a D)

= lim $f(x) - f(x_0)$, $X = X_0 + h$.

, az estetuinero se llama la decivada de f.en Xo.

Sagemath. Sympy Coso.

```
REGIAS DE LA DERIVADA:
                                                      · (Cox) = - sen x
 · (ftg)(x0) = f(x0)+q(x0)
                                                      · (sex X) = cox X
 · (f-g)(x0)= f(x0)-q(x0)
                                                      · (log x) = 1
 · (f.g) (Ko) = f(xo)·g(xo) + f(xo)·g'(xo).
 = f(x_0)g(x_0) - f(x_0) \cdot g'(x_0), f(x_0) = g(x_0) = 0.
 · (qof)(xo) = q(f(xo)) · f(xo)
TEOREMA: (forma equivalende de la definición de decivada).
    .f: D⊆R→R, Xo ∈ D°
     fes derivable en Xo y f(xo) = X EIR ( para Xen un entorno (X-6, Xo+6) CD
     f(x) = f(x) + x(x-x) + R(x), donde line | R(x) = 0 (Deserrollode)

(a recta tangente resto o error x -> x0 | 1x-x0| = 0 (Taylor a erden 1)
Den: > ) Suponemos que fes derivable en Xo y f(xs) = x
       De finimos R(x)= f(x)-[f(x)+x(x-x)]. Queremos verque lin [R(x)] = 0.
       \frac{|R(x)|}{|x-x_0|} = \frac{|f(x)-f(x_0)|}{|x-x_0|} - |x| \longrightarrow 0, \text{ pues } \alpha = \lim_{x \to x_0} \frac{|f(x)-f(x_0)|}{|x-x_0|} = 0.
     (x) Si f(x) = f(x_0) + \alpha(x_0) + R(x) donde \lim_{x \to x_0} \frac{|R(x)|}{|x_0|} = 0
           f(x)-f(x_0)=\alpha(x-x_0)+R(x)
          f(x)-f(x_0) = x + R(x) Cuando x = \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}
                                                 osea, f'(xo) = X
                                                                             D
Ejemplo: f(x) = X2
          f(x)= X2= (x0+h)2 = x02+,2x0h+h2 =
           h = X - X_0 = f(x_0) + xh + R(x).
          1R(x)1 = 1h12 = th1 ->0 & x->x0
          => for derivable en xo y f(xo)= 2xo.
```

R(x)= 0 (|X-X=1)

· f(x) = O(g(x)) (ogrande) Cuando Def -

(P(x) ≤ Og(x) para X en un entorno de Xo

Ey: Sen (x) = 0 (1)

n2+8n+5= 0 (h2) cuando n→00

Dot -- · f(x) = o (g(x)) (o pequeño): les de un orden mais peque tres que g Cuando X-3 Xo.

€ lin f(x) - 0.

Eg: lin sen (x2) = 0 ; sen (x4) = 0 (x4) sen (x2) = 0 (x3)

(Xo+h)2= Xo2+2h Xo+dh)

Acux ty X = Jen X Parateur en avento

· Isen X/ 6/X/ 11X1 / 1/2

· 1x1 < 1+gx1,

> X < sux > lox < sux

Cosx < sen x < 1 si o < x < 7/2

lim seux = 1; seu(x) = seu(x)

Obs: I f es derivable en Xo -> f es continua en Xo

fi f as derivable en Xo → f(x)= f(xo)+ x(x-xo)+ R(x) donde x= f(xo)

1 | Sen (X7) (|X4 = |X14

y line |R(x)| = 0.

Cuando $X \to X_0$, $\lim_{X \to X_0} R(x) = 0$ $R(x) = \frac{R(x) \cdot [X - X_0]}{[X - X_0]}$, $\lim_{X \to X_0} R(x) = 0$ $\lim_{X \to X_0} R(x) = 0$

>> Cuando f(x) -> f(x0)

luego f es continua en Xo

ECHA

f(6)+

TEOREMA DE LAGRANGE, O TEOREMA DEL VALOR MEDIO DEL CALCULO DIFERENCIAL.

Suporgamos que $f: [a|b] \rightarrow \mathbb{R}$, $(a \neq b)$; frances, $\exists x \in (a,b) / f(b) - f(a) - f'(x_0)$

(Existe algun punto donde la recta tangentes paralela a la seconte)

Dem: Sea: $\Delta = f(b) - f(a) \in \mathbb{R}$

Define $\phi(x) = f(x) - [f(a) + \Delta(x-a)]$, $\phi: [a,b] \rightarrow \mathbb{R}$

y le aplico el terema de Rolle. $\phi(a) = f(a) - f(a) = 0$

 $\phi(b) = f(b) - [f(a) + \Delta(b-a)] = f(b) - [f(a) + f(b) - f(a)] = 0$

lugo exinte Xo E (a, b) tal que \(\psi'(xo) = 0 \)

 $\phi(x) = f'(x) - \Delta$

 $\Rightarrow f(x_0) = \Delta$

周

Ejempls: f(X)= X3+ X-8, f(0)=-860; f(2)=2>0

l'es continuer en [0,2] → por el teorema de Bolzano existe algún Xo € (0,2)/f(xo)=0

f(x)= 3x2+1>1, el Xo ES ÚNICO

(si explieran Xoy xo, Xo + xo, Xo, X ∈ (0,2) talesque f(xo)= f(xo)= o

por el fevreus de Rolle >> 3 X, E (x, x) donde f(x,) =0, ABSURDS

Luga, Xo es único

.Obs: 1. If (x) (M + X \in (a,b), endores el teoremo de Lagrange me da una

desqualded | f(b)-f(a) | < M o sea | f(b)-f(a) | < M (b-a) (Condición de)

ξi: f(x)= sex x, f(x)= cox x, 1cox x / (1 + x) (M=1)

1 seu (b) seu(a) (1.16-a) ta, b ER

home a=0: (sen(b)) (15).

Ejercicio!

ME QUEDE DORMIDA

```
OLS: 1 +(x)>0, +xe(a,b) -> f(a) < f(b)
     1 f(x) <0 +x∈ (a,b) => f(a)>f(b)
TEOREMA DE CAUCHY. 650, Sean fig: [a,b] -> R
                                                              continuos en [a,6]
                                                             of derivables en (a(b)
     of g(a) + g(b), Embores 3x6(a,b) dal que:
   \begin{cases} 4. & \text{if } g'(x_0) \neq 0 \implies \underline{f'(b) - f(a)} = \underline{f'(x_0)} \\ g'(b) - g(a) = \underline{g'(x_0)}. \end{cases}
   (2- h g'(x) =0 => f'(x) =0
Obs: Si g(x)= x se acture al renouver de lagrange
Dem == f(b)=f(a) sea p(x) = f(x)-1.g(x) continua en [a,b] y derivable en [a,b)
      Quereuro verque $(a) = $(b) ( ) (a) - 1.0 (a) = f(b) - 1.0 (b)
                                          \iff f(a) - f(b) = \Delta(g(a) - g(b))
                                         ( ) A es el que fornamos
     Por el Jeoroma de Rolle 3 Xo € (a,6)/p'(xo)=0
     φ(x0) = f(x) - Δ·g'(x0) => f'(x0) = Δ·g'(x0).
 \int 1 \text{ Aig}'(x_0) \neq 0 \Rightarrow \Delta = \frac{f'(x_0)}{g'(x_0)}
 (2- hig' (x)=0 =) f'(x)=0
                                                D
REGLA DE L'HOPITAL: fig: (xo-S, xo+S) -> R derinables
     of supongamos que g'(x) +0 si OL/X-X-1(5 endonces lim f(x) = l
Dem. f(x) = f(x) = f'(z) \longrightarrow l (available x \to x_0 / z \to x_0)

g(x) = g(x) - g(x_0) + g'(z)

teorema de Cauchy, donde z = z(x) \in (x_1 \times x_0)
             x=x(6) x(o+6) St >0 X(to+At)-X(to) = X'(to)
                         line AX = dx (to)
  X: R-TR3
                 x(test)
```


13/2

Def: $f: R \rightarrow R$, $f'(x_0) = \lim_{x \to \infty} \frac{f(x_0) - f(x)}{x}$

y= f(x0) + x(x-x0)

X= f(x)

f(x) = f(x0) + x(x-x0) + R(x)

fes demable en Xoy x=f(xo) \implies lim |R(x)| = 0

DERIVABILIDAD EN DOS VARIABLES - FUNCIONES DIFERENCIABLES

Def: f: DCR2 - 1R; graf (f) = ((x,4,2) e R3/2 = f(x,4); (x,4) e D); peix2, p= (x,4) of (P)=fx(P)=Dxf(P)=d |f(xyo) = lim f(xot∆x, yo)-f(xo, yo) ⇒ Deriveda percial def dx |xxo Ax>0 Ax respecto de x en P.

2f(P)=fy(P)=Dyf(P) = d |f(x0, Y) = lim f(x0, Y0+dy) - f(x0, Y0) = Derivada parcial de f dy y=y0 dy=0 dy - Especto a y en P

Exemplo: f(x,4) = xy2; P=(2,3)

 $\frac{\partial f(P)}{\partial x} = \frac{d}{dx} \frac{f(x,3)}{x-2} = \frac{d}{dx} \frac{f(qx)}{x-2} = q$

 $\frac{\partial f(P)}{\partial y} = \frac{d}{dy} |f(z_1 y)| = \frac{d}{dy} |2y^2| = 4y| = 12$

Exemplo: $f(x,y) = \begin{cases} 0 & \text{interpretacion} \\ \text{geometrica.} \end{cases}$ Exemplo: $f(x,y) = \begin{cases} 0 & \text{interpretacion} \\ \text{interpretacion} \end{cases}$

 $\frac{\partial f(o_i o)}{\partial x} = \lim_{\Delta x \to 0} \frac{f(o_i \Delta x, o) - f(o_i o)}{\Delta x} = 0$

 $\frac{\partial f}{\partial y}(o_1o) = 0$. I'm es continua

hi orquiero es acotada en un entorno del (0,0) VilgaVilz.

(ver pag. nymente). $f(\frac{1}{n}, \frac{1}{n}) = n^2 - 3^{\dagger} 00$ si $n - 3^{\dagger} 00$

12k2 + hk2+6hk/ 21k12+ 14 1K12+ 614/K (211(h,k)112+11h,k)13+611(h,k)112 Dado E) O, elegimos o (min (1, E) 12k2+ hk2+6hk (211(h,k)1+11(h,k)12+61(h,k)) (20+02+6d=80+02 11(h,k)11 Sid>11(x,4)11 Comod (1 698 E pres & LE El linuite dobbe es cero => P es diferenciable en (2,3) y el plans taugent al graities de f en el (2,3,18) es: Z= 18+9(x-2)+12(4-3) Notar que df (P) = 9; df (P) = 12 TEORETIA: Sea f:12-31R, PEIR2. Supongamos que les diferenciablem? Endones of (P), of (P) existen of of (P)= ox, of (P)= B Mas sun, dade enalquier vector v con 11v11=1: Of(P) = av1+Bv2 (P) = < Vf(P), V) Dem: Bada proban . En la definición de función diferenciable tomamos (x,y)= p+ Av = (x0+ Av, 40+ Avz); JE(P)= lim f(P+XV)-f(P) f(p+2v)=f(p)+x(x+2v1-x0)+B(yot 2v2-y0)+ R(X14) = f(P) + & AN, + BANZ+ R(X,4) f (P+ 2v)-f(P) = XV1+ (3V2 + R(X14) (es examinable à decin que R(X,4) __ ,00 ||(x,4)-P|| = ||(x0+ 22, 40+ 22) - (x0,40)|| = ||(x4, 22)|| = |2|-||(22,22)|| = |2| IR(X,4) = |R(X,4)| along (X(A), Y(A)) → P enounds A→0 luego, R(x14) -> 0 cuando 1 -> 0 o anaudo (x,y) -> P Por la definición Por OF OF (P) = av, + Bvz de función differenciable. 9 no tengo idea de dónde miecda salió este doble asterisco.

```
Def: El vector gradiente de f en P: Vf(P)=(2f(P)) 2f(P))
      Si fas diferenciable en P: df = <\table f(P), v> = 11711.11v11 cos o
      \frac{\partial f(P)}{\partial v} es máxima si cort = 1
\Leftrightarrow v = paralelv al <math>\nabla f(P)
                                                                                   ADF(P)
      El gradiente me da la dirección de MAXIMO crecimiento
Def: L(v) = OV, + BVz; L: R2-> R
      Se llama La diferencial de f en P y se nota Df (P)
      [L] = [xB] la rushiz de L en la losse comenica
Ejempls: f(x,4)= 12-x2-y2; f:DCR2->R
        D= \((x,4) \in R2/2-x2-y2>0\ = \((x,4) \in R2/11(x,4) || \leq UZ \ = \overline{B} ((0,0), UZ)
        graf (f) = {(X,Y,Z) E R3 /Z= 12- X2- Y2, (X,Y) ED} Como grafico de uno Función
                 = {(x,4,2) < 123/ x24 y2, 22=2, 2>0.} (one speckedenik) de q
                 9: R3 - R/ g(x,4,2)=x2+42+22 (Como superficio implicita).
Exemple: P= (0,0) ∈ D; f(P)= JZ; (0,0, JZ) € S.
        ¿ lous es la ecuación del plano tangente a S en P?
        \frac{\partial f(x,y)}{\partial x} = \frac{1}{2\sqrt{2-x^2-y^2}} - 2x = \frac{-x}{\sqrt{2-x^2-y^2}}
        \frac{\partial f(x,y)}{\partial x} = \frac{-\lambda}{\sqrt{3-\lambda_2-\lambda_{2,1}}} \quad \forall x \in \mathcal{D}_{e} = \left\{ (x,y) / \|(x,h)\| < \gamma_{2,1} \right\}
        Vanuos a ver que l'es diferenciable en D' (un cada punto de D')
        El caudidato a ser el plano tougent es.
        \alpha = \frac{9x}{9t}(0^{1}0) = 0; Q = \frac{94}{9t}(0^{1}0) = 0; Q = (b, b, b) = (0^{1}0^{1}12)
        Z= f(P)+@(X-0)+0(Y-0)
        2=02 es el plano dangente a 5 en q
055: z=zo+x(xx)+B(y-yo) = Ecuación explicida del plano (como gráfico).
     x(x-x0)+(5(4-40)+(-1)(5-50)=0.
                                            (x,B,-1) es horand al plano
     <(x-x0, 4-40, 2-20);(x1(B,-1))=0
```

HOJA N°

Def: In Ω CR un longundo abjecto $f:\Omega \to \mathbb{R}$ es de close C¹ en Ω si todas sus derivodas parciales $\frac{\partial f(P)}{\partial X_j}(P)$ existen \mathcal{F} posto $P \in \Omega$ ($A \subseteq J \in \mathcal{A}$) $\mathcal{F} \xrightarrow{\partial X_j} \mathbb{R} \xrightarrow{} \mathbb{R} \text{ es continuo en } \mathbf{R}.$

TEORETA: Imponganos que reries unabiento y f: r > R2 esde clase C1
Entonces t per, f esdiferenciable en P.

NOTA

FUNCIONES DIFFRENCIABLES

Def: Sea f:DCIRd > IR; PED (evel whereorde D), PEP1, P2,..., Pd); X = (X,, X2,..., X1) E Rd

$$\frac{\partial f(P)}{\partial X_j} = \lim_{\lambda \to 0} \frac{f(P + \lambda e_j) - f(P)}{\lambda}$$
; $e_j = (o_1 o_1 \cdots o_{j-1} \cdots o_{j-1})$; $1 \le j \le d$

Si existen todos: $\nabla f(P) = \left(\frac{\partial f(P)}{\partial x_i}, \frac{\partial f(P)}{\partial x_2}, \dots, \frac{\partial f(P)}{\partial x_d}\right) \in \mathbb{R}^d \Rightarrow \text{ Elgradiente de } f \text{ en } P$

Def: fes diferenciable en PED° si (paroxen un entorno de P)

$$f(x) = f(p) + \langle \nabla f(p), x-p \rangle + R(x)$$

=
$$f(P) + \sum_{j=1}^{d} \frac{\partial f}{\partial x_j}(P) \cdot (x_j - P_j) + R(x)$$
 donde $\lim_{x \to P} \frac{|R(x)|}{||x - P||} = 0$

lim |fx>- [f(P)+(\(\nabla f(P), x-P))] = 0.

Def: f es de clase C^1 en un aloiente $\Omega \in \mathbb{R}^d$ si $\frac{\partial f}{\partial x_j}$ existen y son continuas en Ω para todoj con $1 \le j \le d$

TEOREMA! Ai RCIRO es absento y F: 2 -> IR es C1 en S2 -> fes diferenciable en cada pundo de se

Ejemplo: $f(x_1, x_2) = \begin{cases} \frac{x_1^2 x_2^2}{x_1^2 + x_2^2} & \text{si } (x_1, x_2) \neq (0, 0) \\ 0 & \text{si } (x_1, x_2) = (0, 0) \end{cases}$ $f: \mathbb{R}^2 \to \mathbb{R}$ (d=2) $f: \mathbb{R}^2 \to \mathbb{R}$ (d=2) $f: \mathbb{R}^2 \to \mathbb{R}$

Observances $x = \{(x_1, x_2) \in \mathbb{R}^2 / (x_1, x_2) \neq (0,0) \}$. es un abiento y f es C'en x (es un ecciente de polinomios donde el denominador no manula en x) \Rightarrow f esdiferenciable en x para todo $x \in \mathbb{R}^2$; $x \neq (0,0)$; Que pasa $x \in x \neq (0,0)$?

$$f(0,\chi_2) = 0 \quad \forall \chi_1$$
 $\Rightarrow \frac{\partial f(0,0)}{\partial x_2} = 0 \quad ; \quad \frac{\partial f(0,0)}{\partial x_2} = 0$

$$\frac{1}{2}$$
 R(x) = $\frac{f(x)}{f(a_0)} - \frac{f(a_0)}{f(a_0)} - \frac{f(x)}{f(a_0)}$ (para esk f)

$$|f(x)| = \left| \frac{x_1^2 \times_2^2}{x_1^2 + x_2^2} \right| = \frac{|x_1|^2 |x_2|^2}{||x_1|^2} \le \frac{||x_1|^4}{||x_1|^2} = ||x_1|^2 \qquad |x_1| \le ||x_1|, \quad |x_2| \le ||x||$$

=> fes diferenciable en (0,0) - hay un plans tangente y es horizontal, pres 17 (90)=0
Esferren punto enitico de f)

NOTA


```
Cuando X > P (Cz1Pz) > P=(P1,Pz)
(X1,C1) > P
       of y of son continuas enp (puest es c'en re por hipótesia)
       \frac{\partial f}{\partial x}\left(c_{2}, P_{2}\right) \rightarrow \frac{\partial f}{\partial x}\left(P\right); \frac{\partial f}{\partial x_{2}}\left(x_{1}, c_{1}\right) \rightarrow \frac{\partial f}{\partial x_{1}}\left(P\right) \Rightarrow \frac{|R(x)|}{|X-P|} \rightarrow 0.
       => f es diferenciable en P. 2 esto ao la melen torna
                                                                en el final
Def: Una función T: Rh -> Rm es una transformación lineal si
      1 T(x+y)= +(x)+T(y) +x, 4 ER"
                                                                      丁(で)=方
       QT(X=X)= X·T(X) +X=IR, XER"
 Exemplo: T: R2->1R2
            T(x_1, x_2) = (x_1 - 5x_2) \times (+8x_2)
Def: B = \{e_1, e_2, \dots e_n\}
to Base Comonica de \mathbb{R}^n. e_j = \{0, \dots \}
       X= X1 la + Xz-lz+ - + Xnln
       => T(x)= X1. T(e1) + X2. T(e2)+... + Xn. T(en). (hit es lineal)
        A = [T] & Rnxm hfiles , A = (aij) file: , ai; = (T(ej)).
       Matriz de Tenlabose comonica.
       T(x) = Zaij X; T(x) = A·X -> Producto de Montices
        T \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} 8X_1 - 5X_2 \\ 16X_1 + 3X_2 \end{pmatrix} ; T : \mathbb{R}^2 \to \mathbb{R}^2 ; l_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} ; l_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}
          A = (T(l_1) T(l_2)) = \begin{pmatrix} 8 & -5 \\ 16 & 3 \end{pmatrix}, T(l_1) = \begin{pmatrix} 8 \\ 16 \end{pmatrix}, T(l_2) = \begin{pmatrix} -5 \\ 3 \end{pmatrix}
          A \cdot X = \begin{pmatrix} 8 & -5 \\ 16 & 3 \end{pmatrix} \cdot \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} 8X_1 - 5X_2 \\ 16X_1 + 3X_2 \end{pmatrix} = T(X)
```

NOT

Obs: Toda haves formación lineal T: R" -> R" es de la forma T(X)= A·X donde A E R'xm es una matiz, y evalquier hución de esta homes es una hous formación lineal (Hay an isomor FISMO) Dof: Sea f: DCR" -> R", PEDO, Foo diferenciable en P => existe una housformación lireal T: R^m> Rm Talque, on un autornode P: f(x)= f(p)+ T(x-P)+ R(x), donde lin 1/R(x) =0 La transformación lineal T (que si excode, as cínica) se llama La diferencial de fen Py se mota Df(P) Obs . A: n=m=1; f: R > IR . toda hausformación lineal T: R > IR es de la forma Tx(x) = XX Con XEIR Ey: f(x)=ax+b es una T. lineal (b=0 · fer diferenciable en Py Dr(P)= Tx () l'es decivable en Py f(P)= x. DIFFERENCIAL (dy =)dx dy(x)(P) = P'(x)-P. my = X+C 4 = exte Def: $f: \mathbb{R}^n \to \mathbb{R}$ (m=1); $T: \mathbb{R}^n \to \mathbb{R}$; $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \in \mathbb{R}^n = [T]$; $\chi = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ T(X) = X1 X1 + X2 X2+... + X1 - X1 = (x, x) = x. X $D_{\xi}(P)(x) = \langle \nabla f(P), \chi \rangle; \quad \chi_{j} = \frac{\partial f}{\partial x_{j}}(P)$

```
TEOREMA: f:D\subseteq\mathbb{R}^m\to\mathbb{R}^m, P\in D^o, f(x)=\begin{pmatrix}f_1(x)\\f_2(x)\\f_m(x)\end{pmatrix}, f_1:D\to\mathbb{R}
                                                            O fes diferenciable en P ( ) todos las componentes fij son diferenciables en P
                                                         D'En ese caso, la anahiz de la diferencial de f en Pos:
                                                                                 [Df(P)] = Ofi (P) i=node filas ; [Df(P)] E Rxxm nfilas malumos.

    \left[ Df(P) \right] = \frac{\partial f_1(P)}{\partial x_1} \frac{\partial f_2(P)}{\partial x_2} \frac{\partial f_2(P)}{\partial x_3} \frac{\partial f_3(P)}{\partial x_4} \frac{\partial f_2(P)}{\partial x_4} \frac{\partial f_3(P)}{\partial x_5} \frac{\partial f_3(P)}

\frac{\partial fm(P)}{\partial x_1} \frac{\partial fm(P)}{\partial x_2} \dots \frac{\partial fm(P)}{\partial x_n}

Exemple: f(x_1) = \begin{pmatrix} x_1^2 \\ x_1 x_2 \end{pmatrix}, f: \mathbb{R}^2 \to \mathbb{R}^3, f_1(x) = x_1^2, f_2(x) = x_1 x_2, f_3(x) = x_1 + x_2.

\begin{bmatrix}
\frac{\partial f_1(x)}{\partial x_1}(x) & \frac{\partial f_1(x)}{\partial x_2}(x) & \frac{\partial f_2(x)}{\partial x_2}(x) \\
\frac{\partial f_2(x)}{\partial x_1}(x) & \frac{\partial f_2(x)}{\partial x_2}(x) & = \begin{pmatrix} 2x_1 & 0 \\ x_2 & x_1 \\ \frac{\partial f_3(x)}{\partial x_1}(x) & \frac{\partial f_3(x)}{\partial x_2}(x) \end{pmatrix} = \begin{pmatrix} 2x_1 & 0 \\ x_2 & x_1 \\ 1 & 1 \end{pmatrix}

                                                                           Cual es la housformseioù liveal que aujor aproxima a f eu on entorme
                                                                                       de P=(1/2) € R2?
                                                                                  PHA: T= D(P); [T]= (2 1)
                                                                                                                                          T(x) = \begin{pmatrix} 2 & 0 \\ 2 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_1 \\ 2x_1 + x_2 \\ x_1 + x_2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_1 \\ 2x_1 + x_2 \\ x_1 + x_2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_1 \\ x_2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_1 \\ x_2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_1 \end{pmatrix} \cdot
 TEOREMA (close pasada): f: R2 -> R, P=(x0,40) EB, feodiferenciable en p => Fx,BER
                                                               f(x,y) = f(x_0,y_0) + \underbrace{x(x-x_0) + \beta(y-y_0) + R(x,y)}_{T((x,y)-P)} = 0
                                                       T(XY) = XX+BY; T: RZ->R
                                                    [T] = [x B]
                                                             x = \frac{\partial f}{\partial x}(P); \beta = \frac{\partial f}{\partial y}(P)
```

NOT

f: R > Rm (porey m=3)

$$\left[D_{f}(t)\right] = \begin{pmatrix} f_{1}(t) \\ f_{2}(t) \\ \vdots \\ f_{m}(t) \end{pmatrix}$$

$$f_j^*(t) = \frac{\partial f_j}{\partial t}(t)$$

Ej: m=2

Otra cosa: (el profesor está inspirado, parece)

$$F(q) = G_{m} M \left(\frac{-q}{\|q\|^{3}} \right)$$

$$\left\| \frac{-q}{\|q\|^{3}} \right\| = \frac{1}{\|q\|^{2}}$$

$$F = -\nabla V$$
; $V(q) = \frac{1}{\|q\|}$

Con todo esto el tipo homás quiso decis que todos los "tecnicismos" que estamos viendo son para hacer este Tipo de cosas.

Osea, humo.

$$\frac{\partial h}{\partial r}(P) \frac{\partial h}{\partial \theta}(P) = \frac{\partial g}{\partial r}(q) \frac{\partial g}{\partial \theta}(q) = \frac{\partial f_{z}(P)}{\partial r} \frac{\partial g}{\partial \theta}(P) = \frac{\partial f_{z}(P)}{\partial \theta}(P)$$

$$\frac{\partial f_{z}(P)}{\partial r}(P) \frac{\partial f_{z}(P)}{\partial \theta}(P) = \frac{\partial f_{z}(P)}{\partial \theta}(P) \frac{\partial g}{\partial \theta}(P) = \frac{\partial f_{z}(P)}{\partial \theta}(P) \frac{\partial g}{\partial \theta}(P) = \frac{\partial f_{z}(P)}{\partial \theta}(P) \frac{\partial g}{\partial \theta}(P) = \frac{\partial g}{\partial \theta}(P) \frac{\partial g}{\partial \theta}(P) \frac{\partial g}{\partial \theta}(P) = \frac{\partial g}{\partial \theta}(P) \frac{\partial g}{\partial \theta}(P) \frac{\partial g}{\partial \theta}(P) = \frac{\partial g}{\partial \theta}(P) \frac{\partial g}{\partial \theta}(P) \frac{\partial g}{\partial \theta}(P) \frac{\partial g}{\partial \theta}(P) = \frac{\partial g}{\partial \theta}(P) \frac{\partial g}{\partial$$

$$\int \frac{\partial h}{\partial r} (P) = \cos \theta \frac{\partial g}{\partial x} (q) + \text{ new } \frac{\partial g}{\partial x} (q)$$

$$\frac{\partial h}{\partial \theta}(P) = (-rnmo)\frac{\partial 9}{\partial y}(q) + reoro(\frac{\partial 9}{\partial y}(q))$$

$$[D_h(t)] = [D_q(t)] \cdot [D_f(t)]$$

$$[h'(t)] = [\frac{\partial g}{\partial x_1}(q), \frac{\partial g}{\partial x_2}(q), \frac{\partial g}{\partial t}(q), \frac{\partial g}{\partial t}(q$$

```
h'(t) = (19(q), f'(t)) @
     Ejempls: Porcion 9(4) = (x(4), x(4), z(4)) (Na a jugar elade ( n=3)
            fuerze. F: IR3 - IR3, MAIER
           F(q(t)) = m q(t) -> 2da ley de Newbon.
           En anodio modelo F(q) = - VV(q) donde V: R3 - R (potercial)
me carnica = E(t) = 1 m || q(e) ||2 + V (q(e))
                  energia cinético patericial
     Teorema: la evergia se langera en el timpo; dE = 0
        1 ( = m ( = (+) ) = 1 m ( 79 ( q(t)); q(t))
                        = 1 m (2 q(t); q(t) = m (q(t), q(t))
         voy a asan @ ; V= (x,4,2)
         d(x)= ||x||5 = x5+ x3+ x3+ x3 : Ad(x)= (5x15x155) = 5x.
         9: R3->R
         十(七)=亨(七)
         dE = m (q(t), q(t)) + < V (q(t)), q(t))
             = < $(t), mg(t) + \v(q(t))>=0
                          por la 200 ley de Newton
 TAYLOR EN UNA VARIABLE
     Def: f: I - R, I CR intervalo abiento, fes de clase C en I
         di todas las dericiodas f=f(s) f(1) f'; f(2) f',..., f(k) existen,
         of son continuos en el cuterrale I.
         ( f(0)= f
        ( t(K))
 EN UNA VARIABLE
     TEOREMA: di l'es de close Ck en I, a EI; existe un cinico polinomia P(x)
         degrado 6 K talque f(i)(a) = P(i)(a) para j=0,1,2,..., k
         Explicitemente: P(x)=f(a)+f(a)(x-a)+f'(a)(x-a)2+...+f(a)(x-a)k -> taylor de orden k
         Y mescribinos f(x) P(x) + R(x) - el resto de taylor de orden k
        entonces: lim |Rx(x)| =0
```

As
$$f \in C^{k+1}(T)$$
 excose $C \in (a, x)$
 $R_{1k}(x) = \frac{p(k+1)}{(k+1)!}$

Eyemple: $f(x) = 3 \text{ enc} \times f'(x) = 0 \text{ enc} \times f'$

```
P(K)= a0+a1(x-a)+a2(x-a)2+-..+ak (x-a)k
                                1 P(i)(a) = P(i)(a) (a) (a) (b) = 0,1,2,..., K
                               \Delta f = C^{k+1} \Rightarrow f(x) = P(x) + R(x) = con R(x) = \frac{f(x+1)}{(x+1)} (x-a)^{k+1} y ce(a,x)
                                Fyado X y a; defino una función auxiliar:
                                 g(t) = f(x) - f(t) - f(t)(x-t) - f(t)(x-t)2 - ... - f(t)(x-t)k - m (x-t)k+1
                                 donde M es una constante que se elije para que se empla la
                                 Hipotesis del Jeoremo de Rolle pero (aix)
                                  g(a)= q(x) = 0; Usomos PollE=> ICE (a,x) donde g'(c) = 0
                                 g'(t) = - f(t) (t) (x-t) + f(t) -1 - f(t) (x-t)2 + f(t) (x-t) ....
                                                 - f(k+1) (x-t)k + f(k) (x-t)k-1 + 000 + M (x-t)k =
                                             = M-f(k+1)(t) (x-t)k
                                 \Rightarrow g'(c) = \left[ M - f^{(k+1)}(c) \right] (x-t)^{k} = 0 \Rightarrow M = f^{(k+1)}(c)
                                  Earahamor en t=a
                                 0 = g(\alpha) = f(x) - p(x) - \frac{f^{(k+1)}(c)}{(k+1)!} (x-t)^{k+1}
                                      \Rightarrow f(x) = P(x) + \int \frac{f^{(k+1)}(c)}{(k+1)!} (x-a)^{k+1}
                                Also CK
order k-1 f(x)=f(a)+f'(a)(x-a)+...+ f(a)(x-a)++++ f'(c)(x-a) doude Ce(a,x)/porche lads:
                                 f(x)= f(a)+f(a)(x-a)+...+ f(a) (xa) + f(k) (xa) + Rk(x).
  orderk
                                   0 = \frac{f(c)}{k!} (x-a)^k - \frac{f(a)}{k!} (x-a)^k - Rk(x)
                        R_{K}(x) = \frac{f(x) - f(x)}{f(x) - f(x)}(x-a)^{K} \quad \text{pans algum } c \in (a,x).
f(x) = \frac{f(x)}{f(x)} - \frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a \rightarrow f(x) \rightarrow f(x)
\frac{f(x)}{f(x)} = \frac{f(x)}{f(x)} - \frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} - \frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} - \frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} - \frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} - \frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} - \frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
\frac{f(x)}{f(x)} \rightarrow 0 \quad \text{cuando} \quad x \rightarrow a
```


funciones "BUENAS"

REPASO: Taylor en una variable TEOREMA: A: P: I ⊆ R → R; I unferrals abiento, as R, KEN; FECK(I) Entonces existe un unico polinomia PK(X) de grado CK tal que P(i)(a) = f(i)(a) para j=0,1,2,..., K. Explicitement: Pk(x) = f(a) + f(a)(x-a) + f(a) (x-a)2+...+ f(x)(a) (x-a)2 = \(\frac{f'(a) \cdot (x-a)^3}{11} Si escribicuos f(x) = Pk(x) + Rk(x) Entonces (si f es CK): line | RK(a) = 0 Si fe ck+1 (I): Rk(x) = f(k+1) (c) (x-a) con Ce (a,x) TAYLOR EN DOS VARIABLES / Expresión de Lagrange del resto. f:R-IR fla)=0, fla)>0 => mínimo Local f(a)=0, f(a)(0) maximo local Ej: f(x) = x4] eussk f(0) = 0 } case, f(0) = 0 | NO SIRVE P(x)= f(x1)+f(x1)(x-x1)+f(x1)(x-x1)? f(x,y); $\frac{\partial f}{\partial x}(x,y)$; $\frac{\partial f}{\partial y}(x,y)$ $(f_x)_y(x,y) = \frac{\partial^2 f}{\partial y} \left(\frac{\partial f}{\partial x} (x,y) \right)$; $(f_y)_x(x,y) = \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y} (x,y) \right)$ Exemple: $f(x,y) = xy^3$; $\frac{\partial f}{\partial x} = f_x = y^3$; $\frac{\partial f}{\partial y} = f_y = 3xy^2$ $f_{xx} = 0$; $f_{yy} = 6xy$; $(f_x)_y = 3y^2$; $(f_y)_{x=3}y^2$ fxy = fyx > esto sólo male para

Def: see f(x1, x2,..., xn); (fxi)x; (fxj)xi · Una función f: 2 -> R, 52 C R abiento, se dice de clase CKs todas sus deivados parciales de orden (Kexisten y son continuas en R · fes co en r si fes ck tk f(x,4,2); ((fx)2)4; ((fx)4)2 TEOREMA: Supongamos que fes de clase co en un abserto DCIR? Endonces (fxi)x; (P) = (fxj)xi (P), 4PER; # 16i,j <n Sifes $C^3(\mathfrak{R})$: $((f_{xi})_{xj})_{xk}(\mathfrak{P}) = ((f_{xi})_{xk})_{xi}$ A f es C2: fxy (P) = (fx)y (P) $\frac{9x9\lambda}{9st} = \frac{9\lambda9x}{9st}$ Sife C^3 : $f_{xyx} = ((f_x)_y)_x = \frac{\partial^3 f}{\partial x^2 \partial y}$ I f es Ck. Jkf a, + d2 + ... + dn = k ; d= (x, x21..., an) ENO of (x,y), f: R2-> R; P=(x0,4), fec2 (ofec3), x0,40, h, k e R, Ar=(h,k) 9:1R -> IR $g \in \mathbb{R} \to \mathbb{R}$ $g(t) = f(R + t v) = f(X_0 + th, Y_0 + tk)$ g(t)= g(o)+ g'(o)+ g''(o)+ Rz(t)v) > Decarrello g(t) en Taylor aludedor de R2(X) = R2(1,V) g(0) = f(P), $q = f \circ x$, $\alpha(t) = P + t \cdot r$ $g'(t) = \langle \nabla f(\alpha(t)), \alpha'(t) \rangle = \langle \nabla f(P + t v), \nabla r \rangle$ 8= X-P 9'(0) = 2f (P) · h + 2f (P) · K

1401

(h+k)3= h3+3h2k+3hk2+ k3

FORMAS CUADRATICAS.

$$\langle Av, v \rangle = (Av)^{t} \cdot v = (v^{t}A)v = (hk) \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{pmatrix} h \\ k \end{pmatrix}$$

$$X = \begin{pmatrix} X_1 \\ \dot{X}_2 \\ \dot{X}_n \end{pmatrix}; Y = \begin{pmatrix} Y_1 \\ \dot{Y}_2 \\ \dot{Y}_n \end{pmatrix} \implies \langle X, Y \rangle = Y^{\epsilon} X$$

$$(A \cdot B)^{t} = B^{t} \cdot A$$

Def: Dada f: R->R de clase C2, PEIRh

donde A es la mahiz simética de nxn formada por las decivadas

parciales de segundo orden

$$A = (aij)$$
, $aij = \frac{d^2f}{dx_i dx_j}(p)$

TEOREMA DE TAY LOR (General)

f: RER-Rde clase C2, pc 2. Sea 100/B(P,r)CI; si holler

Sifes
$$C^3$$
: $R_2(v) = \frac{1}{3!} \sum_{\lambda=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^3 f}{\partial x_{\lambda} \partial x_{j} \partial x_{k}}$ (c) $\nabla_i \nabla_j \nabla_k$ $\nabla_k \nabla_j \nabla_k$

```
Ejemple: f(x,4) = exy, P=(0,0) esun punto crítico
                               \frac{\partial x}{\partial t} (x,4) = x \cdot e^{xy}, \frac{\partial y}{\partial t} (x,4) = x \cdot e^{xy}
                           \frac{\partial x_s}{\partial t}(x^{1}d) = \lambda_s \cdot 6_{x\lambda} \qquad ; \quad \frac{\partial \lambda_s}{\partial s}(x^{1}d) = x_s \cdot 6_{x\lambda} \qquad ; \quad \frac{\partial x^{\lambda}}{\partial s}(x^{1}d) = 6_{x\lambda} + \lambda \cdot x \cdot 6_{x\lambda}
                            f(0,0) = 1; df (0,0) = 0; df (0,0) = 0.
                        A = \begin{cases} \frac{\partial x}{\partial x} (0^{0}) & \frac{\partial x}{\partial y} (0^{0}) \\ \frac{\partial x}{\partial y} (0^{0}) & \frac{\partial x}{\partial y} (0^{0}) \end{cases} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
                           Hp(f)(v) = QA(v) = 2hk = hk+kh ; v=(hk)
                           f(x,4) = 1+ xy +0 (11(x,4)||2) de orden mós pequeño que 11(x,4)||2
                           et = 1+t+ t2+ o(t2)
                         exy = 1+xy+ (xx)2+,0 (11(x,4114),
= R4 (x,4) doude lim 1R4 (x,4)1 =0
 Notación de multi- Índice para las derivadas parciales:
                  X= (X, XZ, ··· Xn) E INS
                |X| = |X_1 + \alpha_2 + \dots + |X_n| |
|X| = |X_1 + \alpha_2 + \dots + |X_n|
|X| = |X_1 + \alpha_2 + \dots + |X_n|
|X| = |X_1 + \alpha_2 + \dots + |X_n|
|X| = |X_1 + \alpha_2 + \dots + |X_n|
|X| = |X_1 + \alpha_2 + \dots + |X_n|
|X| = |X_1 + \alpha_2 + \dots + |X_n|
|X| = |X_1 + \alpha_2 + \dots + |X_n|
|X| = |X_1 + \alpha_2 + \dots + |X_n|
|X| = |X_1 + \alpha_2 + \dots + |X_n|
|X| = |X_1 + \alpha_2 + \dots + |X_n|
|X| = |X_1 + \alpha_2 + \dots + |X_n|
|X| = |X_1 + \alpha_2 + \dots + |X_n|
|X| = |X_1 + \alpha_2 + \dots + |X_n|
|X| = |X_1 + \alpha_2 + \dots + |X_n|
|X| = |X_1 + \alpha_2 + \dots + |X_n|
|X| = |X_1 + \alpha_2 + \dots + |X_n|
|X| = |X_1 + \alpha_2 + \dots + |X_n|
|X| = |X_1 + \alpha_2 + \dots + |X_n|
|X| = |X| = |X|
                    8 E 3 dst (p) = D(2,1,2) f (P)
                      Endouces puedo excitois Taylor así:
                  tiles CK: f(P+V) = E Daf(P) or + RK(V); dondelim | RK = 0.
               Shife cirti. Re (x) = I Daf (e) va; C = P+ Ov
                                                                                                                                                                                     € (0,1)
```

FECHA GCAY 37

Eyemple:
$$f(x,y,z)$$
.

 $n=3$; $|\alpha|=0$. $\ll (0,0,0)$; $D^{\alpha}f(P)=f(P)$.

 $K=2$; $|\alpha|=1$ $\alpha=(1,0,0)$ $D^{\alpha}f(P)=\frac{\partial f}{\partial x}(P)$
 $\alpha=(0,1,0)$ $D^{\alpha}f(P)=\frac{\partial f}{\partial y}(P)$
 $\alpha=(0,0,1)$ $D^{\alpha}f(P)=\frac{\partial f}{\partial y}(P)$
 $\alpha=(0,0,1)$

P= (x,4,2):

$$f(x+h, y+k, z+l) = f(p) + \left[\frac{\partial f}{\partial x}(p)h + \frac{\partial f}{\partial y}(p)k + \frac{\partial f}{\partial z}(p)l \right] + \left[\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}(p)h^{2} + \frac{1}{2} \frac{\partial^{2} f}{\partial y^{2}}(p)k^{2} + \frac{1}{2} \frac{\partial^{2} f}{\partial z^{2}}(p)l + \frac{\partial^{2} f}{\partial xy}(p)hk + \frac{\partial^{2} f}{\partial x^{2}}(p)hl + \frac{\partial^{2} f}{\partial x^{2}}(p)kl \right] + R_{2}(x,y,z)$$

Acègo no entendi una goma Bevisar.

```
REPASO
```

```
Def: f: RM - RM, PERM; fes diferenciable en P = existe una transformación
                        Lineal T: R-> Rm tal que f(x) = f(P)+ T(x-P)+ R(x)
                      donde IR(X) 0 Cuando X > P.
                       En este caso, Tes cinicary se anota Df(P) (diferencial de feu P)
             · Como se acosa una housformación lineal?
                         A = [T], A = (a_{ij}), T(x) = A \cdot x, x = \begin{pmatrix} x_i \\ x_2 \end{pmatrix}
Def: ||A|| = \ \[ \sum_{\lambda=1}^{\infty} \sum_{\lambda=1}^{\infty} \alpha_{\lambda=1}^{\infty} \alpha_{\lambda=1}^{\infty} \]
\[ \lambda_{\lambda=1}^{\infty} \sum_{\lambda=1}^{\infty} \alpha_{\lambda=1}^{\infty} \lambda_{\lambda} \lambda_{\lam
 LEMA: Si T: R" -> R" es una transformación lineal y A=[T] es la matriz
                      de Ten la base caus nica, entonces
                      ITONI = IA.XII < IIAII IIXV +XER
Dem: Ax = (A1) (X1) (Ax) = (A1, X) ; [(Ax)i] & [(Ax)i] &
                       donde Ai = (air air. Din) la i-ésimo fila de A.
                      \|\mathbf{A} \cdot \mathbf{X}\|^2 = \sum_{i=1}^{m} (\mathbf{A} \cdot \mathbf{X})_i^2 \leq \sum_{i=1}^{m} (\|\mathbf{A}_i\| \cdot \|\mathbf{X}\|)^2
                                                                                                                    = 11×112 Z HAill2
                     Tome V: = ||x||2. ||A||2.
                       Si f es diferenciable en P y A = Df(P)
                        ||f(x)-f(p)|| = ||A\cdot(x-p)+R(x)|| \le ||A\cdot(x-p)|| + ||R(x)||
                                                                                                                                                                VRON LE
                                                                                               (3) 2) 19-XII & (11411+E). |X-PII & 11x-PII & (12)
                      1 1X-PILCO(E)
                                                                                                    Eu particular,
                                                                                                    t diferenciable en p => f continua en P.
```


 $f: \mathbb{R} \to \mathbb{R}^m$, $g: \mathbb{R}^m \to \mathbb{R}^k$; $h = g \circ f$; $h: \mathbb{R}^n \to \mathbb{R}^k$; $h = g \circ f \circ k$ Si f es diferenciable en $p \in \mathbb{R}^n$ g g es diferenciable en $g = f \circ k \circ k$

entonces has diferenciable en Py [DH(P) = Dy(q) = Df(P)]

[Dh(P)= [Dg(9)]. [Df(P)]

Dem: Sabemos que les diferenciable en P => f(x)=f(P)+T(x-P)+R1(x)

donde T = Df(P) y || R1(X)|| -> 0 cuando X -> P.

y que q es difarenciable en q ⇒ g(x) = g(q)+5(y-q)+R2(x).

donde S= Dg(q) y ||R2(x)|| →0 cuando y → g is ||R2(f(x))|| →0 || ||F(x)-q1| ||P(x)-q1| ||P(x)-q1|

 $\rightarrow h(x) = g(f(x)) = h(p) + S(f(x) - q) + R_2(f(x))$

Sustituyo: (0/0: usan variables distintas para f g g)

 $h(x) = h(P) + S(T(x-P) + R_1(x)) + R_2(f(x))$

= $h(P) + S(T(X-P)) + S(R_1(X)) + R_2(f(X))$

 $= h(P) + (S_0T)(x-P) + R(x)$

diferenciable, es continua -> cuando X-> P, y=fx> q

· Si probamos que || R(x)|| -> 0 cuando X-> P,

esto dina que hes diferenciable en Py Dh (P) = SoT, que es la que

dice el enunciado

Recordances que R(x) = S(R1(x)) + R2 (f(x))

 $||R(x)|| \le ||S(R_1(x))|| + ||R_2(f(x))||$ ||x-P|| = ||x-P||

Por la cuento que hicimos antes 117(x)-q1 (11711 + Ez

X-PV S: 11x-P1 < S2(E)

Exemplo: Cualquier bola abienta en R'es un convexo

B = B(x,r) = \(\cdot \times \mathbb{R}^n / \| \cdot \cdot \times \| \cdot \|

XEB

Sean p, g & B quierone [P,q]CB

Sea $X \in [P,q] \Rightarrow x = (1-t)P + tq$ Paroalgon $t \in [q,1]$

quiero verque XEB

 $\|X - X_0\| = \|[(1-t)P + tq] - [(1-t)X_0 + t X_0]\|$ $= \|(1-t)[P - X_0] + t[q - X_0]\|$

< 11(1-t)(P-X2) 11+11+(q-X2) 11 < (1-t) 11P-X2 11+t 11q-X2

((1-t)+++== 1.

* * TEOREMA DE BOLZANO EN TR'

Sea rCR, f:r-R continua

Si r es arco-conexo, p,q ∈r., f(P)>0, f(q) <0

A: R so Convexo: Xo E LP.q]

Den: Como I es arcs-carexa => 3x [0,1) -> 2 continua/x(0)=P y x(1)=q.

Sea $g = f \circ q$, $g : [0,1] \rightarrow \mathbb{R}$. Eg es continua por la corporición de fuciones g(0) = f(0) > 0 Por 30/2 ous en $\mathbb{R} \rightarrow \frac{1}{2}$ to $\in [0,1]/g(t_0) = 0$.

Sea Xo= X(to) = 12, f(xo)= g((o)=0

hiel 1 a convex quedo eligin & como x(t) = (1-t)p + q, te [0,1]

 $\Rightarrow \chi_o \in [P,q]$

TEORETIA DE LAGRANGE EN Rº (Ojo: Solo sole P/Funciones Convolores en R)

Sea 2 C R'un absients of Fix > IR diferenciable. Pite I, Spongames alle [P.4] CR Six es convexo vale & Piges? entonos 3 Xo E (P.4)/Xo = (1-t) P + tq Paradom to E (0,1)

talque f(p)-f(q) = (\f(x_0), q-p)

Q Xs

NOTA

```
Dem (bgrange): Sea &(t)=(1-t)P+tq, q=fox:[0,1]->R
    => g es derivable en (0,1) y continua en [0,1]
    g'(t) = \langle \nabla f(\alpha(t)), \alpha'(t) \rangle
                                por la regla
                                 dela cadella
          = < \ T ( (K(E)), 9-P>
    Por el Jeorema de lagrange en una variable 3 to E(91): 9(1)-9(0) = 9'(60)
     9(1)= f(9)
                         f(q)-f(p) = < \f(x(6)), q-p>
     9(0)=f(P)
                                    = ( Pf (x0), 9-P)
     Sea Xo = X(to)
Def: f: RC R-R, PER
    of time on P un minimo local (ocalabiva) si Fr>0/f(P) < f(x) + XER con ||x-P||,
   of here en Pun maximolocal (o celebra) of ITOO/f(P) of XED en 11x-P1/Lr
    Si pes un máximo o minimo local sellama un extrema local
TEOREMA DE FERMAT ENIRA
     F:25R → R, PE 2° (pen el unterior de 2)
    of fiewer Pun externo boal of f es diferenciable en P entonos
     Vf(P)=0; df(P)=0 ti
    · Si there en Pour exheus local of I la decivada direccional of (P) en
     la dirección de algún ||v|=1 -> df (P)=0
Dem: Sea X(t)= ++tr; sea g=fox ?+>
    Sifteen an minimum local an P:
                                         9: (-r,r) -> R
    g(o)=f(P) (f(x(t))=g(t), tte(-r,r)
                                          (=) a(t)∈ B(P, r) pues |x(t)-P|=||t·v||
                                                                     = 1t1-1101/Cr
    ⇒ g here en t-oan aunime local.
    ( hi f hiere en pan móxano local > g frem en t= o un ma'xano local ) a sportef-de denirada direccional.
    En particular, on f es di ferenciable en P >> hodos las derinadas direccionales existen
    y of (P) =0.
    Eligiendor=ej: of (P)= oti > Vf(P)=0.
```

Exercisio: Sea Q = \((x,4) \in \mathbb{R}^2 / \text{1x} \k 1, |4| \le 1 \frac{1}{2}, \in : \mathbb{R}^2 \rightarrow \mathbb{R} \, \text{de class C1, P = (1,0)} de final - Supongamos que /a (freshirjida) deuga un maximo absoluto => f(r)>f(x) +xeQ 1) Probon que Of (P) = 0 11) Probanque df (P)≥0 (11) c' Se puede of runar que df (P) = 0? (NO PE 212. in) f(x,y)=x compleque f(P)=1> f(x,y) +(x,y) ∈ Q of (x,y)=1+0. -> conhageuple N=(01) g(t)=f(p+tm)=f(0,1+t), g'(0)=df(0,1) 6,1) EQ +teon It/61 f(0,1+t) < f(0,1) + t con |t| < 1 glt) (g(o) at con It/ (1 for ferms ten g here un anáximo en oc(-1,1) = j(0)=0 > df(1,0)=0 df (0,1) = lim f(1,t) - f(0,1) dx t >0.

V=(1,0) = | 1+1 | 2 (+ 60) g(t)=f(P+tv)=f(1+t,0), t [[-2,0] g(t) < g(0), g: [-2,0] -> iR df (110) = g'(0) = lim g(t) - g(0) 1 te [-2,0) g(€)-g(0) €0 t40: g(t)-g(0) >0 → tio g(t)-g(0) >0. No entendí una goma. Exercicio Chie pasaria si Q= {(XY) = R2/X2+ y2 6 1}?

Exemplo: f(x) = X4, X0=0, f'(x)=4x3; f'(x)=12x2

Xo so osur unimus local (4 global) estricto

(en ay @ NOVALE la correlta)

Recordances econo es el desarrollo de taylor douna función f:R->R de dase C2:

donde
$$H \times f(r) = \sum_{i=2}^{r} \sum_{j=1}^{r} \frac{d^2 f}{dx_i dx_j} (x_0) \nabla_i \nabla_j \implies \text{Hessians de } f \text{ en } x_0$$

Clasificación de las formas cuadráticas de acuerdo al signo.

QA(0)=0

Def O A. QA Sedicen definidas positiva & QA(D) > + VER, V = O

$$e_1 = Q_A(x,y) = 2x^2 + 3y^2$$
 $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$

$$Q_A(x,y,z) = X^2 + 8Y^2 + 5z^2$$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 5 \end{pmatrix}$

$$Q_{A}(x,y) = 3x^{2} + 3y^{2} - 2xy$$

$$= (41 \times -1)^{2} + 2 \times 2 + 2 \times 2$$
 A = (3 -1)

@ QnoA son definidas negativas si Qn(v) <0 + ver, v +0

ey:
$$Q_{\Lambda}(X,Y) = -X^2 - Y^2$$
 $A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$

obs: Si a=0 -> Q(1,0)=0.

Obs A D=0 = 3 voe Rn: A. vo= 0 = QA(vo)= (Avo, vo)=0

Def un conjunto [V. Vz. ... Vn Jen Rh se dia una base octogormal si

1 1 Vil = 1 +j

②〈小、小」〉= のかきま

es: $V_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$, V_1 $V_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$ base extonormal de \mathbb{R}^2

P= (1/2 /2 -. Vn) ER XM

 $P^{\dagger} = \begin{pmatrix} N_1 \\ N_2 \\ N_n \end{pmatrix}$ $P^{\dagger} = I = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ $P^{\dagger} = I = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ $P^{\dagger} = I = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

TECRETIA: Sea AER xn siquéhica. Entonces existe una bose ortonormal de autovectores [v., vz. vn] de R formorda por autovectores de A

 $Av_{i} = \lambda_{i} v_{i} (\lambda_{i} \in A)$

 $P = (V_1, V_2, V_n) \quad P \stackrel{\downarrow}{A} P = D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}$

=> A = PDPt

Qa(v) = V+AA = V+ (PDP+) AF

= (Ptv)t D (Ptv) = QD (Ptv)

Qp(V) = 1, V, 2 + 222 + + 1 1 22

Que es definida positiva () Quesdefinida positiva () 1 x >0 + K

QA es definida negativa () Poes definida negativa () Xx (O VK

ARABANO:

Ejempo : QA(X,4)= 2xy , A= (01) $X_A(\lambda) = \det(\lambda I - A) = \det(\lambda - 1) = \lambda^2 - 1 \Rightarrow \begin{cases} \lambda_1 = 1 \\ \lambda_2 = -1 \end{cases}$ A.V= Ar, V=(X) $\begin{pmatrix} y \\ x \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \implies x = y$ $\lambda = 1$: $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ $\lambda = 1$ $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}$ $P=\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \quad \begin{pmatrix} u \\ v \end{pmatrix} = P \begin{pmatrix} u \\ v \end{pmatrix} = P \begin{pmatrix} u \\ v \end{pmatrix}$ $X = \frac{u-v}{\sqrt{2}}$, $Y = \frac{u+v}{\sqrt{2}}$ $2xy = 2\left(\frac{u-v}{\sqrt{z}}\right)\left(\frac{u+v}{\sqrt{z}}\right) = (u-v)(u+v) = u^2 - v^2 = 1 \cdot u^2 + (-1)v^2$ 3 Pa es definida Augatica $A = \begin{cases} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{cases}$ A es definida pontida (an >0 1 det (an an) >01 det (a)>0 Asdef regardant and a det azi azi >0 1 det (A) (0. aij=aji Condiciones ne a sarias para tener un extremo: TEOREMA: f: RCR->R, de clase C'pero, Vf(P)=0 (perom ponto cui hico) $H_{P}f = Q_{A}$: $A = \left(\frac{\partial^{2}f}{\partial x_{i}\partial x_{i}}(P)\right) \in \mathbb{R}^{n \times n}$ 1) Si Pes un minimo local de f=> Hpf(v)>0 +v ∈ Rh (Hylf) es definido por hao o semi definido por hao) Dhi Pas un máximo docal de f > Hpf(v) (0 + v E Rh (HP(f)es definido hegadino o semidefinido hegadino) Den O Suponemos P un anianiano local des (3 r>o/far) < f(x) + x & B(P, r)) dado ar ER puedo sorponer 1/V/=1 Qa (r)= ||r||2: Qa (r) g(t)=f(P+tar), g:(-1,1)-> R (1/21) =1) == V 9 house en t=0 an minimo local.

g(t) = I of (pto)v

g'(t) = \(\frac{\partial}{\partial} \) \(\frac{\partial}{\pa

g'(0) = \ \frac{n}{2} \frac{n}

g here au minimes local ent=0. >> g"(0) > 0. (por el teorema en 1 minimes les les entes les entes en 1 minimes les entes en entes en entes entes

@ Sale agual (combis & por >)

Def: un pundo Porético def (VF(P)=0) se dice que pundo de ensilladora si no es un externo local.

Corchario: Ai pasur punto arífico de f: R-> R de dose C2 y Hpf es indefinido

Desun punto de ensilladora.

Exemple: f: R2 - iR, f(x,y)= x2-y2+x4+y6, P=(a0)

Hpf (0,0) (x,y)=1 (x2-y2)

Condiciones suficientes para teneron exhemo

TEORETA: $f: R \subset \mathbb{R}^n \to \mathbb{R}$ de close C^2 , $P \in \mathcal{R}^n$. Suponemos que $\nabla f(P) = 0$ $H \circ pf = Q_A$; $A = \left(\frac{\partial^2 f}{\partial X_i \partial X_i}(P)\right)$.

1 Si Hpf as definido positivo -> f here en Punanimiono local esticto.

1 A Hofes Jehnide Negation > f here en Pan moximo local esticto

Lern: Ai Ques definida positiona >> 3 c>0/Qu (v)> C. 1/v//2

(si Qa es definida hegolino => QA (V) (-C |V|)

Den: S= {or \in R^/ |hr/ = 1} s cenado y acotado (es cun compacto)

Que es contrava => por Weierstrass 3 C>0: Qu (v) > c tron (v)=1.

conc=QA(V3)>0, Voes

si ves evalquiero: Q(v)= //v//2 Q(v) > C //V/2

Deny del Jeonema: 45-X-P f(x)= f(p)+ (pf(x) + 1 Hpf(x) + R2 (x) Elifo E= = Chadel lema Elifo E= = Para ese E existe 8>0. Sobernosque ling |Rz(x)| =0 fal que |Rz(x)| (E |V|2 => f(x)> f(p)+1 c||v||2 - E||v||2 || ||x-p|| LE si ||x-p|| Co fx>f(P)+(c/2-E) ||v|2=f(P)+c/4 ||v|2>f(P) 1 X + P y MX-PM LS => & Here en P un Auinimo local estricto.

1/3 FECHA

. Def: f: A -> 3 uns fracción del conjundo A en B

3. Les biyectiva (bi - univoca) => * Les inyectiva y suryectiva

Para toda YEB 3! XEA/f(x) = y

Counds f es biyective >> podemos definir la funcion unversa f: B-> A f(y)= el único XEA falque Y=f(x), xxx.

Exemplo: f(x)=X2 f: R > R, f moes injective: f(z)=f(-z)=4

-> f was bigetive -> the here inverse

Exemplo: f(x)=X2, f: Rzo - Rzo es bigective.

 $f: A \rightarrow B$ fog: $B \rightarrow B$ fog= IdB $g: B \rightarrow A$ $g \rightarrow f$ gof: $A \rightarrow A$ gof= IdA.

donde ida: A=>A, ida(x)= x +xEA.

Exemplo

f(x)= sen x

Seu(ancsury) = Y +yE[-1,1)

arc sen (senx) = X \$\forall x \in \frac{\pi}{2} \frac{\pi}{2}

f: [-\frac{\pi}{2},\frac{\pi}{2}] → [-1,1] f':[-1,1]→[필,필]

P(y)= anc seu (y)

TEOREMA DE LA FUNCIÓN INVERSA EN UNA VARIABLE

Versión global: f: [a,6] → [c,d], f continua y estictamente execuente (sixxy » f(x)x f(x) f(a)=c, f(b)=d (acb)

=> fes bijectiva y fi [c,d) -> [0,b] es continua y estictamente creacute d d y y y y y obs: de aplica a f(x)=x², f:R>0 > R>0 f=sexx, f=[==,=]->[-1,1]

```
Dem: 1 ( so unjections si XIX2 [a,6] con X, + X2
                                     Puedo suponer x_1 < x_2 \implies f(x_1) < f(x_2)

\implies f(x) \neq f(x_2)
                                                                                                                                                                                                                                                             por ser f'eshictamente creciente.
                       @ l'es surjections: sea y \( \begin{aligned} \( \cdot \), \( \cdot \) \( \cdot \) \( \cdot \), \( \cdot \) \( \cdot \), \( \cdo \cdot \), \( \cdot \), \( \cdot \), \( \cdo \cdot \), \( \cdo \cdot \), 
                                      f(x) = y-f(x)
                                      f(a)= y-c 20 } como f (my por le tante f) es continua,
                                    P(6) = y-d Lo. Puedo usas Bolzano.
                                 · f(x)= >
                                                                                                                     Por el torema de Bolgano, existe Xo E (a,6) tol que
                  es o= y-f(x) $ f(xo)=0 ⇒ f(xo)= y luego, for surgections.
                                                                                                               (Y=(X)) X [E [6,2] 3Y & omin
                                    Esto define una frención enversas f': [c,d] - [a,b]
                                    Queremos over que fes eshictamente areciente y contiamos
                                  Sean Y1, Yz & [C,d], Y1 + Yz predo reponer Y1 L Yz, Espera
                                    y seau X, X2: X=f'(y1) (=> Y=f(x1)
                                                                                                                      X_2 = f(y_2) \Leftrightarrow y_2 = f(x_2)
                                    Quererros ver que X, <x2. Noterno X, + X2, Ma Y1 = Y2.
                                  d'fuero, X2 < X1 → f(X2) < f(X1) → Y2 < Y1 ABSURDO. Endoncos X1 < X2.

Primos que fes es hichamente arecrente.
                                    No folta ver que f? [c,d] -> [a,b] es continua
                                  Sea Yor [Ed] quiero over que féreartima en yo, yo = f(xo) P/un unico Xo=f(yo) e [a, b]
                                  Dado E>0 quienaver que 30/0/2+ 1/2 (y) - f(y) / (y) + E (y) - f(y) + E (y) + 
                         X, \( x, \( \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) 
                                    Y=f(x) x, x, X = [A" A5] => X= L_(A) = [x" x5] => L(A) < L(A) < L(A) < L(A)
                                  Yz=f(x)
A x=f(y) = [x, xz] => |f(y)-xo| < 8!
                                  sea & Lmin (45-4, 42-40), sily-40/cd → 4€(4, 42) + (1)
                                    => x= f (y) ∈ [x,, x,] >> |f'(y)-x> | < E
```

Dem: Li l'es decreciente y continua - les enecunte y continua (f)(x)=-f(x). Le reduce a la Dersión auterion. Versión local f: I=(0,8) -> IR de clase C1 (coderinable en I y f': I> iR es con homa) Sea Xo € I /f (xo) ±0; X=f(xo). Entonas 7 an entonno Ode Xo V (xo) O=(xo-E, Xo+E) CI y un endornoV=(Yo+E, Yo+E) toles que fo: U→V es la jectiona of (fo): V→ U es de close C1. Dem del la Oversión local: Por hipótesis: f(x) + 0 => f(x)>0 to 3.

Su pongamos que f(x)>0. Como f os c'=> f'os construma -> 3 d>0 dal que si XE Ū = [Xs-S, Xo+S] entonces f(xs)>0 → fo: U → iR es estrictamente creciente. le aplico el teremo anterior (version global) a= Xo-S, b= Xoto C=f(a), d=f(b) >> the shipection of (fo) : V-> U es continua. A= (c'q) queremos her que (f/s) les C1. Sean Yo EV, F = f/s, Y=F(x) $(F^{-1})'(y_0) = \lim_{y \to y_0} F^{-1}(y) - F^{-1}(y_0) = \lim_{x \to \infty} F(F(x)) - F'(F(x)) = \emptyset$ Como FyF' son continuas X -> X => Y-Y. Como F'es continua > (F-1) resulta continua > F-1 es C1 Ejemplo sobre como derivor la un versa: f(x) = seux, f: [= Te Te] -> [-1,1], f'(y) = anc seu y (onc seny) = 1 = 1 donde y = sen x } sen^2 x + as^2 x = 1 \(\frac{1}{5(x)} = \frac{1}{50x} \times \text{donde } y = sen x \\
\(\frac{2}{50x^2} \times 1 - \frac{5}{50x^2} \times 1 one sur y = 1 dt Cosx = 1- sen'x $=\frac{1}{\sqrt{1-2ex^2x^4}}$ $=\frac{1}{\sqrt{1+y^2}}$ choepupo: for = dan x, f: (+# II) - R; f'(y) = oridg y, f'': R - [#, II) (f-1)'(Y)= 1 = cos2 x donde y = donx; tou2 x +1 = 1 1+ don'x = 1+y2 are do (y)= (1) 1+t2 dt

```
Becorder: A: T: R" -> R" es una hans formación lineal decimos que
                                                                  Tes inversible => Tes biyectiva => Thiere una inversa.
                                                                        En ese caso, becesariamente
                                                                       fea A = [T] es la matriz de Teu la bose cononica => [T-1] = A-1
                                                                          A.A-1 = A-1.A = I = (01,0)
                                                                  Too muersible ( det (A) +0. (A es muersible o duo arrigular)
                                                                                      det (A1) = 1
det (A)
Ejemple T: R2 -> R2
                                                               T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ x-y \end{bmatrix} , \qquad \begin{cases} T \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = A
                                                           \top \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} ; \ \top \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} 
 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   det(A)=1(-1)-1-1=-1-1=-2 =0
                                                    \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 4 & 0 & 1 \end{pmatrix}
F_{2} \leftarrow F_{2} - F_{1}
\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -2 & -1 & 1 \end{pmatrix} F_{2} \leftarrow -\frac{1}{2} F_{2}
                                                       \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 
                                                      \begin{pmatrix} u \\ v \end{pmatrix} = T\begin{pmatrix} x \\ y \end{pmatrix} ; \begin{pmatrix} x \\ y \end{pmatrix} = T^{-1}\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} x \\ y \\ y \end{pmatrix} = \begin{pmatrix} u + v \\ z \\ y - y \end{pmatrix}
                                                    \begin{cases} u = X+Y \\ V = X-Y \end{cases} \Leftrightarrow \begin{cases} X = \frac{u+v}{2} \\ Y = \frac{u-v}{2} \end{cases}
      TEOREMA DE la función inversa EN Rº f: x-> 1Rº de clase Cº
                                                                  sea Xo E de (Xo). Su ponemos que Df (xo) es moens ble (J(xo) = det[Df(xo)] to)
                                                               entonces exister un entorno Ude Xo (UCI) y an entorno V de yo tolos que
                                                               to: U -> V so bi yestina y (f/v) de clase C1
                                                          [D(fx)] = [Df(x)]
                                                                   hose da la demospación de esto en ésta anatería
```

3

Exmplo: y P(r,0) - C P: A -> B P(r,o) = (rcoso, rseno) Y= romo $[DP(r, \Theta)] = \begin{bmatrix} \cos \Theta & -r \sin \Theta \\ \cos \Theta & \end{bmatrix} B = (XY)/(X)O(Y)O(Y)$ J(r,0)= det [DP(r,0)]= r +0 x r +0 P (x,4) = (x2+y2, anchy (x)) L = 1X5+ X5 tane = X (x,y) ∈ B $\Phi = \operatorname{anc} \left\{ \left(\frac{\chi}{\lambda} \right) \right\} \quad \Phi \in \left(\frac{1}{4}, \frac{1}{4} \right)$ A= (cos 0 - romo) . A-1=? (Coro - reno 10) 7 (1 - rtano lesso 0) , seno resso 01) 7 (seno resso 0 1) 2 , Fre- Fre coso 10 1) 2 pus tano sero = Fig. = Fix = F - and cope of @ plane core : rene core : rene = 1 + min -H201-e 0520 = C50

C50 (D7-1(X,Y)) = [-300 050] $\begin{bmatrix} \frac{\partial c}{\partial x} & \frac{\partial c}{\partial y} \\ \frac{\partial c}{\partial y} & \frac{\partial c}{\partial y} \end{bmatrix}$ L = 1 X5+ 45 $\frac{\partial \Gamma}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}} = \frac{\Gamma \cos \theta}{\Gamma} = \cos \theta$ (r,0)= P-(x,4). dr = 4 = rous = sen o O = arcon (4) DX = 1 (4x) (-4) = 1 (-4) = - romo

DX = 1+(4x)2(x2) = x2+42 (x2) = x442 = - romo

REPASO TEOREMA DE LA FUNCIÓN INVERSA

Suporgames que $f: \mathcal{R} \subseteq \mathbb{R}^n \to \mathbb{R}^n$ es de clase C^1 , $\mathcal{L} \subseteq \mathbb{R}^n$ es un absente, Alea $Xo \in \mathcal{R}$. Suponemos que Df(Xo) es muersible $(\Leftrightarrow J(Xo) = Det(Df(Xo)) \neq 0)$ entonces existem entornos U de $Xo(U \subseteq \mathcal{R})$ of V de Yo = f(Xo) talesque $f(Xo) \to V$ es biyectiona of $(f(V))^{-1}: V \to U$ es de clase C^1 Has aim: $D(f(V))^{-1}(Y) = (Df(X))^{-1}$ dende Y = f(Xo).

Obs: $f:\mathbb{R}^n \to \mathbb{R}^n$ biyechia; $g=f^{-1}$; Y=f(x), $g \times = g(y)$, hify g son C^1 $f \circ g = g \circ f = id \mathbb{R}^n$

Por los D(fog)(y) = Df(x) o $Dg(y) = idR^n(y) = Y$ Les la de D(gof)(x) = Dg(y) o $Df(x) = idR^n(x) = X$ $Dg(y) = Df(x)^{-1}$

Función IMPLICITA.

Def: Sia $f: \mathbb{R}^2 \to \mathbb{R}$ La curva denivel c de f es el conjunto $Sc = \{(x,y) \in \mathbb{R}^2 / f(x,y) = c\}$

Ejemplo: $f(x,y) = x^2 + y^2$, $\nabla f(x,y) = (2x,2y)$. $||(x,y)|| = ||x^2 + y^2|| = ||C||$ SC = eincumferencia de naclio <math>||C|| cendado en el origen |A|| > 0 $SO = \{(0,0)\}$

Se = φ si c<0

TEOREMA DE LA FUNCIÓN IMPLÍCITA (en R2), f: ILCR2 R de clase C1, ILCR2 absiento, PEIR. P=(X0,Y0), C=f(P). Superiganios que df (P) +0 entonces existen un entono U de Xo, um entorno V de Yo y una función

Q:U→V tales que si (x,4) € Ux.V,

f(x,y)=c => y= p(x) ((x,y) = 5c)

(dentro des rectoir gelo UXV puedo despejon y como función de X Sc M (UXV) = gráfico de q

Dir.

NOT

Dos: de en la sipración del feorema. f(x, q(x)) = c +x EU

Porregladela dx (x, \psi(x)) \dx + \frac{\partial f}{\partial y} (x, \phi(x)) \cdot \phi'(x) = 0

$$\varphi'(x) = \frac{\partial f(x, \varphi(x))}{\partial x}$$

$$\frac{\partial f(x, \varphi(x))}{\partial y}$$

Ejemplo C=1, f(x,4)= x2+ y2

$$\frac{\partial f}{\partial x}(x,4) = 2x$$

$$\varphi'(x) = -\frac{2x}{2y} = -\frac{x}{y} = \frac{-x}{\sqrt{1-x^2}}$$

P=(卡·龙) $x^{2}+y^{2}=1$ $y^{2}=1-x^{2}$ $y=\sqrt{1-x^{2}}=\varphi(x)$ φ(x)=== 2x

· f(x,y)=x2,4y2 P=(1,0) df (1,0)=0 (el feoremo como lo enunció (no se aplica) 0 + 5 = (1/0) = 5 +0

exple un entorno de Pdonde f(x, Y)=1 = x = q(x)

Supongamos que estamos en la situación del teorema como la enverció ¿ Cual es la necho tongente algustica de pens! Y= 4 + 9'(x) (x-x0) P = (X, Y.) λ= Λο + - <u>9x</u> (xο 1λο) (x xo) (4-40) 10 (0,0x) = - 3f (x0,40) (x-x0) of (x0, y0) (x-x0) + of (x0, 40) (4-40) = 0 (xf(x0,40), (x14)-(x0, 40)>=0 (ordesorrol) >> \(\forall (\times 0, 90) es perpendicular a la acta tangente al gráfico de que p 2 4 (x: 40) => A (b) (voles Vf(p) presentances df(p) to. o of (P) to y in of to made despetan X have la anjones enenda) ¿ Que passo a 12 R3 → R7 Sc = \((x, 4, 2) \in R3/f(x, 4, 2) \) is a superficude mivel & C 3x (x,4) = -3x (x,4,2) donde (X14) EU 39 (x,4) = - 2 (x,4,2) Z = (0, Y) Similarment & PESC y VF(P)#0 -> el plano tougant a & en Pes < P(P), (X,42)-P) =0 Vf(p) es es hogand a Sc an P.

Ejemplo: f(x,4,2) = x2+42+22, P=(1,1,2), P(p)=c=6. Sc = es fera de radio de centrada en el origer, ¿ Cual os el plano fo a Sc en p? \$\f(x,4,2)=(2x,24,22), \$\forall f(p) = (2,2,4). ((2,2,4), (x,4,2)-(2,2,4)) = 2(x-1)+2 (4-1)+4(2-2)=0 -> Jenna curplicita de la ecusción del plano = 2x-2+24-2+45-8=0 4Z= -2x-2y+12 Z=X-Y+3 > forma explicita aha formo: $x^{2}+y^{2}+z^{2}=6 \iff z=+\sqrt{6-x^{2}-y^{2}}$ 9(1,1)=44=2 1: R3 > 12 g IR? SIR Z= g(1,1) + dg (1,1)(x-1) + dg (1,1)(4-1) $\frac{\partial}{\partial x} (x_1 y) = \frac{-x}{\sqrt{6-x^2-y^2}} \qquad \frac{\partial}{\partial x} (x_1 y) = \frac{-1}{2}$ $\frac{\partial}{\partial y} (x_1 y) = \frac{-y}{\sqrt{6-x^2-y^2}} \qquad \frac{\partial}{\partial y} (x_1 y) = \frac{-1}{2}$ $\Rightarrow z = 2 + (-\frac{1}{2})(x-1) + (-\frac{1}{2})(y-1) = 3 - \frac{x}{2} - \frac{y}{2}$

Maximizer o minimizer f(x), fig: R" -> R 9(x) = C Jujera a g(x) & C Ejemplsen R2: Tua Ximuzan XY suyeta a la restricción X2+ y2 = 1 f(x,4) = x y g(x,4) = x2+y2, S= 1(x,4) = 1R2/q(x4)=14 Ses un compacto - Is tiene algun aus xinus St= { (x, J-x2) / X ∈ [-1,1]} 5= 5 US 5= { (x,-11-x2)/x ∈ [-1,1]} $h(x) = x \sqrt{4-x^2} \quad h: [-1,1] \rightarrow \mathbb{R}$ h sera hua xima on X=Xo (h2 lo es l(x)= h2(x)= x2(1-x2) = x2-x4 l'(x)=2x-4x3 L(x) here L(x) pto enthico: $L(x) = 0 \Leftrightarrow 2x = 4x^3 \Leftrightarrow x = 0$ $L(x) = 0 \Leftrightarrow 2x = 4x^3 \Leftrightarrow x = 0$ $L(x) = 0 \Leftrightarrow 2x = 4x^3 \Leftrightarrow x = 0$ $L(x) = 0 \Leftrightarrow 2x = 4x^3 \Leftrightarrow x = 0$ l(0)=0, \Rightarrow l y per la tauto ha alcanza el duaximo l(1)=l(-1)=0 \Rightarrow $x=\pm\frac{1}{\sqrt{z}}$ l(+t2)= 1-1=1 h(+1/2)==== f/s alcanzor el ma ximo en (1/2 / 1/2) (-1/2 / 2/2) que es /2 en (1/2, 1/2) (-1/1/2) se alcanza el duiani mo de f que en -1/2 TEORETTA DEL MULTIPLICADOR DE LAGRANGE, F: IR" -> IR, g: IR" -> IR, cl>sec1 Supongamos que queremes huaximizar o minimizar f(x) sujeta a la eoudición XESE = \ XERT/g(x)=C3 In of home an pando P on maximo a minimo (local) y Vg(P) +0, enforces 3 XEIR (el multiplicador de lagrange) talque Vf(P) = > Vg(P)

RIOTS

En el gen pla de autes: f(x,y) = xy

g (x,y)= x2+y2=1 (c=1)

Vg(x,4) = (zx,zy) ≠ (0,0) & (x,4) € 51

 $\nabla f(x,y) = (y,x)$. Si en $P = (x_0,y_0)$ se alcanza el móximo \Rightarrow por el ferrenos

existe LER: $\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$

Yo = 2xox

 $\frac{Y_o}{2X_o} = \lambda = \frac{X_o}{2Y_o}$

Xo = Zyo X $2x_0^2 = 1$ $x_0^2 = \frac{1}{2}$ X0+ Y02 = 1

 $\left(\pm \frac{1}{\sqrt{z}} + \pm \frac{1}{\sqrt{z}}\right) = \pm \frac{1}{z}$

TEOREMA DEL MULTIPLICADOR DE LAGRANGE!

f: R^-> IR, g: R^-> IR, Close C1, f(x) systa a la condición XESc= [XER/g(x)=c] Li f/Sc deve curpomto P om anó x ano o anímimo local y \(\nagger(P) \neq 0\)
entonos \(\frac{1}{2}\) \(\text{R}\) (el anolóphicador de Logrange). Tal que \(\nagger(P) = \lambda \nagger(P) = \lambda \nagger(P).

Recordemos que el plano to a Sc en Pos perpendicular a N= Vg(Po)

XE planoty (X-P, N)=0

En elphoty: TpS= {VER^n/LV, N>=>} dubespacio vectoriol de R^n
= P+TpSc

LEMA: Spongamos N= Vg(P) + 0 =>

TPSc= Fore Rr/3 une curve x: (EE) -> Rr de Clase C'talque X(0)=P, x'(0)=v Ax(t) ESc +te(EE)}

Dem: TPS= STERN/ (N)=0}

TpSc = {reR"/3 cura a: (-E,E)-> R" de C tolque a(o)=P, a'(o)= r ga(t) eSc tte (-E,E)}

Vearmon que Tosa C Tosa:

Sea VETPSc/g(a(t))=C (constante) + t

Usando la regla de la cadena,

< \rangle (x(t)), (x'(t)) = 0

Cont=0: (vg(P), x(0)) = 0

⟨N, v>= 0 ⇒ VE TpSc

beautoque TpSc S TpSc

Sear/(N)=0, como Vg(P) +0 = = [An]: dg (P) +0

Podemos Aupones 29 (P) +0.

⇒ 3 enformo Ude F= (P1... Pn1) ∈ IRⁿ⁻¹, entorno Vde Pn y one focios P: U → V de clese C¹

tologo si X= (X1 × X2) € UXV => a(X1 × X2) = € (Les de la hociosis involvidas)

Jolque si X=(X1,..., Xn) € UXV => g(X1,..., Xn) = C (Jeo. de la fración implicida).

⇒ Xn= Q(X,..., Xn-1)

Sea V/(a, N)=0, N=(V,..., Vn), Considero V=(V1,..., Vn) Sec P= (P,..., Pn) y 7= (P,..., Pn-1) define α(t)=(P+tv, φ(P+tv)) ∈ Sc, si t∈ (E, E) Si colculo x(0)=(P, y(P))=P X'(t) = (T; & Yours perde n-1 variables @= \ \frac{\partial}{\partial} \(\text{P} + tv) v; \quad \text{Paregladela cadena} \) Eucueusho a emolphier Y/t=0; $X'(0)=(\overline{x}^2) \frac{\partial g}{\partial x_j}(P) \cdot (\overline{x}^2) = (\overline{x}^2) \cdot (\overline{x}^2) \cdot$ W= Vg(P), N=(N,...,Nn) $= \widetilde{V}, \sum_{j=1}^{n-1} \left(\frac{N_3(P)}{N_n(P)} \right) V_j$ Queremos verque 5 (-Ng). v; = Vn (porque 01'(0)=v) Para esto, uso la hipótesis Como (v, N)=0 => \frac{\tilde{ \(\frac{\lambda_{\mathballer}}{N_{\mathballer}} \) \(\lambda_{\mathballer} = -1 \) \(\tau_{\mathballer} \tau_{\mathballer} \) \(\tau_{\mathballer} = -1 \) \(\tau_{\mathballer} \tau_{\mathballer} \) \(\tau_{\mathballer} = -1 \) \(\tau_{\mathballer} \tau_{\mathballer} \) \(\tau_{\mathballer} = -1 \) \(\tau_{\mathballer} \tau_{\mathballer} \) \(\tau_{\mathballer} = -1 \) \(\tau_{\mathballer} \tau_{\mathballer} \) \(\tau_{\mathballer} = -1 \) \(\tau_{\mathballer} \tau_{\mathballer} \) \(\tau_{\mathballer} = -1 \) \(\tau_{\mathballer} \tau_{\mathballer} \tau_{\mathballer} \) \(\tau_{\mathballer} = -1 \) \(\tau_{\mathballer} \tau_{\mathballer} \tau_{\mathballer} \tau_{\mathballer} \) \(\tau_{\mathballer} \tau_{\ma $\frac{1}{N\ln} \cdot (-N_n V_n) = V_n$ → Tp Sc ⊆ Tp Sc No se soma en el final · de mostración del teorema de lagrange. Vous a Crenque: df (Po)=0 + r∈ TPoSe Expongames que t/5c house un máximo o anínimo en P. Si a mive en el plano ty -> por el leura:] x (E, E) -> R"/ (X(O) = Po, X'(O) = Pr 1 X(E) ESc +t f(x(t)) \le f(Po) sif frene en Po un Chrismo local f(x(t)) > f(Po) di frène en Po un Maximo local

NOT

-> foxtiene en t=0 cm anoixime o animo local => fox (0)=0 (fox) (t)= <f(x(t)), x'(t)> por reglor de la codena ent=0: (fex)(0)= < \pr (\alpha(0)), \alpha'(0)> = $\langle \nabla f(P_0), \nabla \rangle = \frac{\partial f}{\partial r}(P_0)$ poes les diferenciable (Po)=0 · < Vf(Po), v)=0 +VETPSC Tonemos a N= Vg(Po)g W= Vf(Po) W=WI+Wz donde WI/N'y Wz IN Aphico (a a = Wz ETpSc (WI+WZ, WZ) = 0 (W1,W2)+(W2,W2)=0 Como wilw => <w1, us>= 0 0 + (Wz, Wz) = 0 11w2112 = 0 >> Wz =0 $W = \omega_1 \implies \nabla f(P_0) = \lambda \nabla \nabla \nabla F(R)$ INTEGRALES Def: Sea f: [a,b] - R acotada (y por logeneral continua) A f(x) >0 og contamo: Une partición To de Carbolas un conjunto de puntos donde alprinuer purbo a=xo<x, <x2<... <xk = 6 lauscere mig = Inff(x) Infxe[xin xi] f(x) Mi = Sup f(x) Supxe[xi, ... xi] f(x) Existe tiempre in for acotada

fijada una partición T de [a,b] y doda f: [a,b] - R acotada, de fininos du Suma inferior de Rienon $J_{tt}(f) = \sum_{i=1}^{n} m_i \Delta X_i$, dende $\Delta X_i = X_{i-1} X_{i-1}$ Suma Superion: Sm (f) = I Mi DXi, donde DXi = Xi - Xi-1. Aproximaciones groseras! Def: Integral Infecior: I = I f(x) dx = sup { Sm (f)/11 es una partición de [a,b]} Integral Specior: S= f(x) dx = Inf & Str(f)/TT es una partición de [a16]} Def: les integrable (en el sentido de Rieman) en [a,b] I = S of lo notomos a fardx Nota: Hay furciones que au cumplen esto. TEOREMA: Si f: [a,6] -> iR es continua en un cutervalo cerrado → escutegrable en [a,b] demo, en el larotonda obs: An (f) & Sn (f) * Criterio DE INTEGRABILIDAD f es integrable en [a,b] ⇒ 3 una tucesión (TTn) de particiones de [a,b] talesque Smn(f)-Jmn(f) -> O Quaerdo n->00 Además desto situación, li Sm (f) -> l -> f(x)dx = l · Calculoremo uno integral con la definición.) x dx, tomo particiones, tomo la partición uniforme The part unif d [0,1]. f(x)=X, $S_{\pi}(f)$ Como fes execute \Rightarrow $m_i = f(x_{i-1})$ A fes crecute $M_i = f(x_i)$ difendereccente, en este coso: mi= Xi-1 = 1-1 $M_i = \chi_i = \frac{1}{2}$ Como la part. is uniforme: > 1Xi = 1

 $J_{\Pi}(f) = \sum_{i=1}^{n} {i-1 \choose n} \frac{1}{n} = \frac{1}{n^2} \sum_{i=1}^{n} {i-1 \choose n^2} = \frac{1}{n^2} \sum_{i=1}^{n-1} {n-1 \choose n} = \frac{1}{n^2} \sum_{i=1}^{n-1} {n-1} \sum_{i=1}^{n-1} {n-1} = \frac{1}{n^2} \sum_{i=1}^{n-1} {n-1} = \frac{1}{n^2}$ Su(f)= = 1 (2) . 1 = 1 T = 1 n (n+1) - 1 condo n-> 0. · Otra cutegral calculado con la definición de untegral: f(x)= x2; Sx2dx, accurre Orando la def. de embegal: IT (f) = 2 (i-1)21 $S_n(f) = \frac{2}{2} \left(\frac{i}{n} \right)^2 \cdot \frac{1}{n} = \frac{1}{n^3} \frac{2}{2} \frac{i^2}{2}$ Alason la udgial en un linite, veamos un coso en el que funcione la com y otro en el que mo funciona Oso definición de cutegralo lidad en f no undegrable Si domanio algo como:

f(x) = {0 & x=0 } loncuen

1 & x>0 Concum discontinue en un pinto, il discontinua)f(x)dx $f(x) = \begin{cases} 1 & \text{s} \times \text{es racional} \\ 0 & \text{s} \times \text{s} \times \text{es racional} \end{cases}$ $f[o_1 1] \longrightarrow 1$ ¿ Que Pasa d'endegro en el [0,1] 3 $J_{\pi}(f) = 0$ Sn(f) = 2 1 x =1 La entegral enferior pars esta función es cero:) for dx =0 la entegral fuporiorpara esta finciair es uno: | f(x) dx=1 -> luego, faro es curtegrable

NOTA

PARTE1: Si f: [a,b] - R continue, y de fino F(x) = [x] f(t)dt, enfonces feoderinoble en (a,b) y F(x) = f(x) + X ∈ (a,b).

PARTEZ: REGIA DE BARROW.

Dada ama función, di deugo amondegral g(x)dx con g continua y 3 G: [a,b] - R continua en [a,b] y derivable en (a,b)/6'(x)=f(x) t(x) (sema primition de g) => g(x)dx = 6(6)-6(a)

de toma en la finales

NOTA

TEOREMA FUNDAMENTAL DEL CALCULO

1. A $f: [a_1b] \to \mathbb{R}$ acotada e untegrable en $[a_1b]$. Sea $F(x) = \int_{-\infty}^{\infty} f(t) dt$ A en un punto $X_0 \in (a_1b)$ f es continua \Rightarrow f es derivable en X_0 $f(x_0) = f(x_0)$.

2. Regla de Barrow. Supongamon que G: [a,b] → IR es una primitina def(x)

(Ges continua en [a,b], derivable en (a,b) y G'(x) = f(x) + x ∈ (a,b)),

entonces ∫ f(x) dx = G(b) - G(a)

PROPIEDADES DE LA INTEGRAL

1. Linealided respects de la fonción: $\int_{a}^{b} (f_1 + f_2)(x) dx = \int_{a}^{b} f_1(x) dx + \int_{a}^{b} f_2(x) dx$ $\int_{a}^{b} (\lambda \cdot f)(x) dx = \lambda \int_{a}^{b} f(x) dx \qquad (\lambda \in \mathbb{R})$

2. Aditivided respects del intervels $\int_{a}^{c} f(x) dx = \int_{b}^{b} f(x) dx + \int_{b}^{c} f(x) dx.$ $\int_{a}^{a} f(x) = 0 \quad \text{if } f(x) dx = -\int_{a}^{a} f(x) dx$

3 Monotonia.

A $f(x) \leq g(x)$, $\forall x \in [a,b]$ $\Rightarrow \int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx.$

Eyemplo: Si m, M $\in \mathbb{R}$; $m \in f(x) \in M$ $\Rightarrow m(b-a) \in \int_{a}^{b} f(x) dx \in M(b-a)$

4. Designal dad triangular para integrales.

-If (x) | $\langle f(x) \langle f(x) | f(x) | \psi(x) \rangle$ - $\int |f(x)| dx \langle \int f(x) dx \langle \int f(x) dx \rangle$ = $\int |f(x)| dx | \langle \int f(x) dx \rangle dx$ designal dad his angular.

| f(x)dx | (| f(x)|dx | a y b en enalquier orden

5. Shax=A(b-a) HAER

MOTA

F(x)-F(x)= \f(t)dt-\f(t)dt = \f(t)dt. por la propose dad de aditividad respecto al intervolo

$$\left|\frac{F(x)-F(x_0)}{x-x_0}-f(x_0)\right|=\left|\frac{1}{x-x_0}\int_{x_0}^{x}f(t)dt\right|-f(x_0)$$

=
$$\left| \left(\frac{1}{x - x_0} \int_{x_0}^{x} f(t) dt \right) - \left(\frac{1}{x - x_0} \int_{x_0}^{x} f(x_0) dt \right) \right|$$

Por hipótesis, les continua en Xo = dado E>O 30>0/1t-xo/20 = Alla Sattle entonas If(xo)-f(t)/LE. Luego; Ai X > Xo:

$$\left|\frac{F(x)-F(x_0)}{x-x_0}-f(x_0)\right| \leq \frac{1}{|x-x_0|} \int_{x_0}^{x} |f(t)-f(x_0)| dt dt$$

$$\leq \frac{1}{|x-x_0|} \int_{x_0}^{x} \mathcal{E} dt = \frac{1}{|x-x_0|} \mathcal{E}(x-x_0) = \mathcal{E}$$

$$\left| \frac{F(x) - F(x_0)}{x - x_0} \right| \leq \frac{1}{x_0 - x} \left| - \int_{x_0}^{x_0} f(x_0) dt \right| \leq \frac{1}{x - x_0} \left(\int_{x_0}^{x_0} f(x_0) dt \right) = \mathcal{E}.$$

(Sale por el Jeonemo de Lagrange: X X2 H(X1)-H(X2)=H(C)(X1-X2) Con CE(X1,X2)

=) G(x)= C+ (t) dt +x (a,b) (x)

Hage X-> a, G(X)-> G(a) por la continuidad de G

f(t)dt -> 0

Como f as continua, => If(x) (Man por el terremo de Weiersham [[f(t)at] {) If(t) | at {) Mat = M(x-a) - o si x > a en & hacemon x > b: I'f(t) dt -> I'f(t) dt. (Fes continua) f(t)dt - f(t)dt = f(t) dt & M(b-x) -> 0 1/4 Quando x-> 6 $G(b) = C + \int_{0}^{b} f(t) dt \Rightarrow G(b) = G(a) + \int_{0}^{b} f(t) dt$ => f(t) dt = 6(b) - 6(a) INTEGRALES IMPROPIAS. 1 x dx = x + che x + 1 - x x + 1 $\xi_1: \alpha > 0, \int \frac{1}{x^{\alpha}} dx = \lim_{\epsilon \to 0} \int_{0}^{1} x^{-\alpha} dx$ = line (11-a - E1-a) = 1-α 2: 0/4<1 la unicopal compositio converge +00 2: 4>1 la unicopal diverge Eyempho: $\int_{-\infty}^{\infty} e^{-x} dx = \lim_{M \to \infty} \int_{0}^{\infty} e^{-x} dx = \lim_{M \to \infty} \left(-e^{-x} - (-1) \right) = 1$ Det S f(x) dx = lin S f(x) dx f continua en [0, M) Exemplo: 500 1 dx = lim 1 dx

M, > +00 M 1+X dx = lim arcdg(M) - arcdg (M) $= \frac{\Pi}{2} - \left(-\frac{\Pi}{2}\right) = \frac{1}{17}$

Equation
$$\int_{1}^{\infty} \frac{1}{|X|} dx = \int_{0}^{\infty} \frac{1}{|X|} dx = \lim_{\varepsilon \to 0} \left(\int_{0}^{\varepsilon} \frac{1}{|X|} dx + \int_{0}^{\varepsilon} \frac{1}{|X|} dx \right)$$

$$= \lim_{\varepsilon \to 0} \left(\frac{(\varepsilon)^{3}}{2^{3}} - \frac{(\varepsilon)^{3}}{2^{3}} + \frac{1}{2^{3}} - \frac{\varepsilon^{3}}{2^{3}} \right) = 0 \text{ Ai } \varepsilon_{1} = \varepsilon_{2}.$$

$$= \lim_{\varepsilon \to 0} \left(\int_{0}^{\varepsilon} \frac{1}{|X|} dx + \int_{0}^{\varepsilon} \frac{1}{|X|} dx \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log 1 + \log 1 - \log \varepsilon_{1} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{1} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log 1 + \log 1 - \log \varepsilon_{1} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{1} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log 1 + \log 1 - \log \varepsilon_{1} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{1} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log 1 + \log 1 - \log \varepsilon_{1} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{1} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log 1 + \log 1 - \log \varepsilon_{1} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{1} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log 1 + \log 1 \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{1} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log 1 + \log \varepsilon_{1} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{1} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log 1 + \log \varepsilon_{1} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{2} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log 1 + \log \varepsilon_{2} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{2} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log 1 + \log \varepsilon_{2} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{2} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log 1 + \log \varepsilon_{2} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{2} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log 1 + \log \varepsilon_{2} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{2} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log 1 + \log \varepsilon_{2} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{2} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log 1 + \log \varepsilon_{2} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{2} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log 1 + \log \varepsilon_{2} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{2} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log 1 + \log \varepsilon_{2} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{2} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{2} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{2} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{2} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{2} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{2} - \log \varepsilon_{2} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{2} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{2} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{2} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{2} \right) = \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} - \log \varepsilon_{2} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\log \varepsilon_{2} -$$

NOTA

FECHA

$$P(x) = \int_{-\infty}^{\infty} x^{4} e^{-x} dx \qquad \text{Converge $\forall x \geq 0$}$$

$$f_{\text{trace}, G, G, G, M}$$

$$\int_{-\infty}^{\infty} x^{4} e^{-x} dx + \int_{-\infty}^{\infty} x^{4} e^{-x} dx$$

$$\int_{-\infty}^{\infty} x^{4} dx + \int_{-\infty}^{\infty} x^{4} dx = 1.$$

$$P(x) = \int_{-\infty}^{\infty} e^{-x} dx = 1.$$

$$P(x) = \int_{-\infty}^{\infty} e^{-x} dx = 1.$$

$$P(x) = \int_{-\infty}^{\infty} e^{-x} dx = \int_{-\infty}^{\infty} (e^{-x})^{1} dx dx$$

$$= \lim_{n \to \infty} \int_{-\infty}^{\infty} (e^{-x})^{n} dx = \int_{-\infty}^{\infty} (e^{-x})^{1} dx dx$$

$$= \lim_{n \to \infty} \int_{-\infty}^{\infty} (e^{-x})^{n} dx = \int_{-\infty}^{\infty} (e^{-x})^{1} dx dx$$

$$= \lim_{n \to \infty} \int_{-\infty}^{\infty} (e^{-x})^{n} dx = \int_{-\infty}^{\infty} (e^{-x})^{1} dx dx$$

$$= \lim_{n \to \infty} \int_{-\infty}^{\infty} (e^{-x})^{n} dx = \int_{-\infty}^{\infty} (e^{-x})^{1} dx dx$$

$$= \lim_{n \to \infty} \int_{-\infty}^{\infty} (e^{-x})^{n} dx = \int_{-\infty}^{\infty} (e^{-x})^{1} dx dx$$

$$= \lim_{n \to \infty} \int_{-\infty}^{\infty} (e^{-x})^{n} dx = \int_{-\infty}^{\infty} (e^{-x})^{n} dx dx$$

$$= \lim_{n \to \infty} \int_{-\infty}^{\infty} (e^{-x})^{n} dx = \int_{-\infty}^{\infty} (e^{-x})^{n} dx dx$$

$$= \lim_{n \to \infty} \int_{-\infty}^{\infty} (e^{-x})^{n} dx = \int_{-\infty}^{\infty} (e^{-x})^{n} dx dx$$

$$= \lim_{n \to \infty} \int_{-\infty}^{\infty} (e^{-x})^{n} dx dx = \int_{-\infty}^{\infty} (e^{-x})^{n} dx dx$$

$$= \lim_{n \to \infty} \int_{-\infty}^{\infty} (e^{-x})^{n} dx dx = \int_{-\infty}^{\infty} (e^{-x})^{n} dx dx$$

$$= \lim_{n \to \infty} \int_{-\infty}^{\infty} (e^{-x})^{n} dx dx = \int_{-\infty}^{\infty} (e^{-x})^{n} dx dx$$

$$= \lim_{n \to \infty} \int_{-\infty}^{\infty} (e^{-x})^{n} dx dx = \int_{-\infty}^{\infty} (e^{-x})^{n} dx dx$$

$$= \lim_{n \to \infty} \int_{-\infty}^{\infty} (e^{-x})^{n} dx dx = \int_{-\infty}^{\infty} (e^{-x}$$

Def. f:D -> R D=[a,b]x[c,d]= \((x,y) \in R^2/a \le x \le b, c \le y \le d \re C R^2

If $f(x,y) dx dy \rightarrow Integral dobte en un rectangelo

= Volumen sobre la región Dabajo del gráfico de <math>f$ = volumen de $f(x,y,z) \in \mathbb{R}^3 / 0 \le z \le f(x,y)$

· Una partición TT del rectangolo D queda determinada pordos particiones:

a=Xo(x, <xx<...< xn-1 (xn=b) Partición de [a,b]

C= Yo < Y, L Y2 L. LYm-, < Ym = d Partición de [c.d.]

 $D_{ij} = [X_{i-1}, X_i] \times [Y_{j-1}, Y_j], D = \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} D_{ij}$ "Union easi disjunta"

Dis 1 Die tiene area O si (i,j) + (k,l)

· Supongamos que f: D-> R es acotada:

 $m_{ij} = \inf f(x_i y), (x_i y) \in D_{ij}$; $M_{ij} = \sup f(x_i y), (x_i y) \in D_{ij}$

Definimos las sumas de Riemann para la partición TI

· Su (f)= \(\frac{\tilde{\tii

· $S_{\pi}(t) = \sum_{i=1}^{n} \sum_{j=1}^{m} M_{ij}$ area (Dij) = $\sum_{i=1}^{n} \sum_{j=1}^{m} M_{ij} \Delta X_{i} \Delta Y_{j}$ (Suma Superior)

area(Dij) = DXi. Dyj ; AXi = Xi - Xi-1

 $\Delta y_j = y_j - y_{j-1}$

· I= | f(x,y)dxdy = Sup { Str (f)/TT pontición de D} (integral inferior de fend)

· S= If (x, x) dx dy = inf [Sm(f)/tiportición de D] (integral superior de fon D)

Def: l'es integrable en el sentido de Riemann en D di I=S

En ese caso, su volon común se avota por: Il f(x,y) dxdy.

TEOREMA: D=[a,b] x[c,d] f: D-> R li f es continua en D > l'es integrable en D TEOREMA DE FUBINI: D=[a,b]x[c,d], f:D-> R continua. $\iint f(x,y) dxdy = \iint \int f(x,y) dy dx$ = $\int_{q} \left[\int_{P} f(x^{t}\lambda) dx \right] d\lambda$ Exemplo: I = | X3 y2 dxdy , D=[1,2] x [2,3] $I = \int_{S} \left[\int_{3}^{X_{3}} \lambda_{5} \, d\lambda \right] dx$ $\int_{2}^{3} x^{3}y^{2}dy = x^{3} \int_{2}^{3} y^{2}dy = x^{3} \cdot \underbrace{y^{3}}_{3} \Big|_{2}^{3} = \underbrace{x^{3}(3^{3}-2^{3})}_{3} = \underbrace{19}_{3} x^{3}$ $\int_{1}^{2} \frac{19}{3} \times x^{3} dx = \frac{19}{3} \int_{1}^{2} \frac{19}{3} \cdot \frac{19}{3} \cdot \frac{19}{4} \cdot \frac{19}{12} = \frac{19}{12} \cdot \frac{19}{12} \cdot \frac{19}{12} = \frac{19 \cdot 15}{12}$ obs: D=[a,b]x[c,d] $\iint f(x) \cdot g(y) dxdy = \int_{a}^{b} \left[\int_{a}^{d} f(x) \cdot g(y) \cdot dy \right] dx$ = $\int_{0}^{1} f(x) \left[\int_{0}^{1} g(y) dy \right] dx$ Caso especial de una función de variables $= \left(\int_{a}^{b} f(x) dx\right) \cdot \left(\int_{a}^{d} g(y) dy\right)$ separadas. INTEGRALES TRIPLES Def. D=[a,b]x[c,d]x[e,f] = {(x,y,z) eR3/a(x(b,c(y(d,e(z(f) TEOREMA DE FUBINI D=[a,b] x[c,d] x[e,f] $= \int_{\mathcal{A}} \left[\int_{\mathcal{A}} E(x^{1}\lambda^{1} + y^{2}) dx \right] d\lambda dy$... y así, puedo haca ni combinaciones si lengo in variables diferentes

NOT

	1 60.01
Sea DCR2 una reción compacto (comado a ocatado)	D (meconito)
Sea DER 2 una región compacto (cerrada y acotada)	[Over 0]
Sea D&con rectaingula de lador paralelor alor ejes/DCD $\iint f(x,y) dxdy = \iint \overline{f}(x,y) = dxdy$ $f(x,y) = \int \overline{f}(x,y) = \int \overline{f}(x,y)$	(f(x,y) & (x,y) e)
$\iint f(x,y) dx dy = \iint f(x,y) = dx dy \qquad f(x,y) = dx dy$	x4)= } 0 & (x4) & D
Def: In Des un rectangule y CCD es un conjunto, Chique	
predo conseguir una partición de D tal que la sur	na de las áreas
de los rectoriques en D que contan a C es nuenos	
que E.	
	217 ()
TEORETIA: El grafier de una función continua tiene à	
Def: D= {(x,y) \in R2/a \(\times \(\times \) \) \\ \(\times \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	de tipo t
$ \int_{g_1} g_2 \int_{g_1(x)} f(x,y) dy dy = \int_{g_1(x)} \int_{g_2(x)} f(x,y) dy dx $	
91 0 91(x)	
D= \((x,4) \eng^2/c\(\x\) \(\hat{h_1}(y)\)\\\ \(\engline \kappa \	Lipo TT
d h. h. Sf(x,4) dxdy = sd sh2(x) dx] dy.	
Exemplo: D= {(x,4) \in 12 / x2+ y2 \le R2 } = \((x,4) \in 12 /-	RTX(# - NESTE TATES
$f(x,y) = h\left(1 - \sqrt{x^2 + y^2}\right)$	
2	
S ((A)) dx dx = vol (A) ?	= h (1- F); r= \x2+1
RY D	
$(R \cap X^2 - X^2)$	
$\operatorname{Aval}(\Delta) = \begin{cases} R \left(\int_{-R^2 \times R^2}^{\sqrt{R^2 - \chi^2}} h \cdot \left(1 - \sqrt{\frac{\chi^2 + \chi^2}{R}} \right) dy \right) dx. \end{cases}$	
12/1	
-RJ -105-x2 R / 1-3	
-RJ -102-x2 R / 1-3	
-RJ 102-x2 R / -3	
-RJ 102-x2 R / -J	

NOT

FECHA

D= {(1,0,2)/06,16,06062#,0626g(r)}

$$\frac{h}{h} \left(1 - \frac{c}{R}\right) = g(h)$$

$$\begin{aligned}
& = \int_{0}^{R} \left[\int_{0}^{2\pi} \left[\int_{0}^{q(r)} r dz \right] d\varphi \right] dr \\
& = \int_{0}^{R} \left[\int_{0}^{2\pi} r g(r) d\varphi \right] dr \\
& = 2\pi \int_{0}^{R} r g(r) dr = 2\pi \int_{0}^{R} r \left(1 - \frac{r}{R} \right) dr .
\end{aligned}$$

T(r,o,q)=[r. senq. coso, r seno, seno, r. cosq) D*= {(1,0,9)/0<16, 06062#, 0696#} vol (⊖)= ∭1 dxdydz. = D= ((x,4/5) = R3/x2+ Az+55 < K5 } Not (6)= 1 r2 senq drdodq V(R)=lim V(R+E)-V(R) vol (0) = S [] 2# [] T sen qdq do dr Area de la esfero de radio R = 2TT (Sr2dr) - (Sungdq) Ssengedy = - cosq |" $= 2\pi \cdot R^3 \cdot 2 = \frac{4\pi R^3}{3}$ = - COST + CODO Areo de la esfera = 4 TT R2. = 1+1 = 2 $\int_{-\infty}^{\infty} g(x) dx = 1$ g(x) = 1 e x/2 $\int_{0}^{\infty} e^{-x^{2}x} dx = \sqrt{2\pi}$ $-R = \lim_{R \to +\infty} \left\| \frac{e^{-(x^2+y^2)/2}}{e^{-x^2/2}} dx \right\|^2$ CR= {(X,Y)/IX| {R, 1Y| {R} \[\int \(\frac{\(\text{c} \x \d \y \) = \[\int \(\frac{\(\text{c} \x \d \y \) = \[\int \(\frac{\(\text{c} \x \d \y \) = \[\frac{\(\text{c} \x \d \y \) + \(\text{c} \x \d \y \) = \[\frac{\(\text{c} \x \d \y \) + \(\text{c} \x \d \y \) + \[\frac{\(\text{c} \x \d \y \) + \(\text{c} \x \d \y \) + \[\frac{\(\text{c} \x \d \y \) + \(\text{c} \x \d \y \) + \[\frac{\(\text{c} \x \d \y \) + \[\text{c} \x \d \y \] + \[\frac{\(\text{c} \x \d \y \) + \[\text{c} \x \d \y \] + \[\text{c} \x \d \y \] + \[\frac{\(\text{c} \x \d \y \) + \[\text{c} \x \d \y \] + \[\text{c} \x \d \y \d \y \] + \[\text{c} \x \d \y \d \y \] + \[\text{c} \x \d \y \d \y \d \x \d \y \d \y \d \x \d \y \d \x \d \y \d \y \d \x \d \x \d \x \d \y \d \x \ $= \left(\int_{\mathbb{R}}^{\mathbb{R}} e^{-x^{2}/2} dx\right) \left(\int_{\mathbb{R}}^{\mathbb{R}} e^{-y^{2}/2} dy\right) = \left(\int_{\mathbb{R}}^{\mathbb{R}} e^{-x^{2}/2} dx\right)^{2}$

NOTA

(P). (G) = (Sxp-1. exdx). (Sxp-1 exdy) = \(\text{X}^{1} \cdot \text{Y}^{1} \cdot \end{array} \dx \dy \(D = \frac{1}{3} \text{(x,4)} \end{array} \dx \dy \(D = \frac{1}{3} \text{(x,4)} \end{array} \div \text{R}^{2} \text{(x>0,4>0} \) = \[(uv)^{P-1} [u(1-v)]^{9-1} e^{-u} du dv. 1-(X+Y) = X 4= M-X Y= 4 (1-0) D= ((u,v)/wo, ocrc1) y= 11- 42 $J = \frac{\partial(x,y)}{\partial(u,v)} = \frac{\partial x}{\partial u} \frac{\partial x}{\partial v} = \frac{\partial x}{\partial u} \frac{\partial x}{\partial v}$ = V(-u) - u (1-v) = - V. M- u + M. v = - M P(P)- T(q) = [[] er + 9-1 (1-v) 9-1 e-m dv] du = (o n + 9 - 1 e du) · (o 1 2 - 1 (1 - v) 9 - 1 dv) = 1 (P+q). B(P,q) B(P,q) = [P) [Q) ejemplo B(\frac{1}{2},\frac{1}{2}) = \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{1}{2})^{2}} \Partial \frac{\Gamma(\frac{1}{2})^{2}}{\Gamma(\frac{1}{2})^{2}} \Partial \frac{\Gamma(\frac{1}{2})^{2}}{\Gamma(\frac{1})^{2}} \Partial \frac{\Gamma(\frac{1}{2})^{2}}{\Gamma(\frac{1}{ B(\frac{1}{2},\frac{1}{2}) = \int \frac{1}{x} (1-x)^{\frac{1}{2}} dx = \left(\frac{1}{4} (1-u^2)^{\frac{1}{2}} 2u du = 2\right) \frac{1}{\sqrt{1-u^2}} du = 2 (ancsen 1 - anc sen o) = TT u= Xh Dentaras P(2)2= TT 下(生)=1 PARCH XPIEXX

NOTA

- puto el que lee -