Análisis Matemático I - Matemática I
Análisis II para computólogos - etcétera.

- Apuntes* de la Teórica de Pablo De Nápoli -

VERANO 2017

* Tomados por Daniela

Análisis II
Pablo de Nápoli - poenapo edm. uba.ar

- 1° parcial Jueves $23 / 2$ 1hhs.
- 2'parcial Viernes 17/3 11hs.
- Rec 1 precial Sábado 25/3 9:15 ms.

Bibliografía:

- Rec 2iporcial Sàbado 1/4 9:15 mm .
- Apostol-Noriega - Rey Pastor-ct.

Números reales

- $\mathbb{N}=\{1,2,3,4, \cdots\} \rightarrow$ Números natorales. $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$
$\mathbb{Z}=\{\cdots-3,-2,-1,0,1,2,3, \ldots\} \rightarrow$ Números entecos \rightarrow se puedeu, restar sin restricciones
- $\mathbb{Q}=\left\{\frac{p}{q} / p, q \in \mathbb{Z}, q \neq 0\right\}-$ Númecos racionalesus Le puedeu dienidin.
- II: Númecos vracionales.

$$
d^{2}=1^{2}+1^{2}=2 \Rightarrow d=\sqrt{2} .
$$

- $\mathbb{R}=\mathbb{Q} \cup \mathbb{I}$ ~Númecos ceales.

TEOREMA: No existe $d=\frac{p}{q} \in Q\left(p, q \in \mathbb{Z}\right.$, $q \neq 0$) tal que $d^{2}=2$ ($\sqrt{2}$ esicraiond)
Padevins suponer $\frac{p}{q}$ irceducible.
Dem: $\left(\frac{p}{q}\right)^{2}=\frac{p^{2}}{q^{2}}=d^{2}=2 \Rightarrow p^{2}=2 q^{2}$

$$
\begin{aligned}
& \Rightarrow p^{2} \text { es par } \Rightarrow p \text { es } p a r \Rightarrow p=2 \widetilde{p} \text { con } p \in \mathbb{L} \\
& (2 \widetilde{p})^{2}=2 q^{2} \Rightarrow 4 \tilde{p}^{2}=2 q^{2} \Rightarrow 2 \tilde{p}^{2}=q^{2} \Rightarrow q^{2} \text { es } p a r \Rightarrow q \text { es par }
\end{aligned}
$$

Esto es ABSURDO pues eutonces $\frac{p}{7}$ no secía icreducible.

Axioma 1: Propiedad asociativa.

$$
\forall a, b, c \in \mathbb{R},(a+b)+c=a+(b+c)
$$

Axiora 2: Propiedad conmutativa

$$
\forall a, b \in \mathbb{R}, \quad a+b=b+a
$$

Axioma 3: Existencia del neutro.

$$
\exists 0 \in \mathbb{R}, \forall a \in \mathbb{R}, \quad a+0=0+a=a
$$

Axiora 4 : Existencia del inverso aditivo.

$$
\forall a \in \mathbb{R} \exists-a \in \mathbb{R}: a+(-a)=(-a)+a=0 \quad \Rightarrow \quad a-b=a+(-b)
$$

Axioma 5: Asociativa del producto:

$$
\forall a, b, c \in \mathbb{R},(a \cdot b) \cdot c=a \cdot(b \cdot c)
$$

Axioma 6: Conmutativa del producto.

$$
\forall a, b \in \mathbb{R}, \quad a \cdot b=b \cdot a
$$

Axioma 7: Neutro del producto.

$$
\underset{\substack{\exists \\ 1 \neq 0}}{ } \quad \forall a \in \mathbb{R} \quad a \cdot 1=1 \cdot a=a
$$

Axioma 8: Imverso multiplicativo

$$
\forall a \in \mathbb{R}, a \neq 0 \Rightarrow \exists a^{-1}: a \cdot a^{-1}=a^{-1} \cdot a=1 \Rightarrow a: b=a \cdot b^{-1}
$$

Axioma 9: Propiedad distributiva.

$$
\begin{aligned}
\forall a, b, c \in \mathbb{R}, \quad a(b+c) & =a \cdot b+a \cdot c \\
(a+b) \cdot c & =a \cdot c+b \cdot c
\end{aligned}
$$

S: Relación de orden eus \mathbb{R} (eu seutido auplio).
Axioma 10: Propiedad reflexiva: $\forall a \in \mathbb{R}, a \leq a$
Axioma 11: Propiedad antisimétrica: $\forall a, b \in \mathbb{R}(a \leqslant b \wedge b \leq a \Rightarrow a=b)$
Axioma 12 : Propiedad transitiva: $\forall a, b, c \in \mathbb{R}(a \leqslant b \wedge b \leqslant c \Rightarrow a \leqslant c)$

$$
\begin{aligned}
& a<b \Leftrightarrow a \leqslant b \wedge a \neq b \\
& a>b \Leftrightarrow \sim(a \leqslant b)
\end{aligned}
$$

Axroma 13: orden total: $\forall a, b \in \mathbb{R}(a<b \vee b<a \vee a=b)$

Axiomas de compatibilidad:

- Axioma 14: Compatibilidad con la suma:

$$
\forall a, b c \in \mathbb{R}(a \leqslant b \Rightarrow a+c \leqslant b+c)
$$

Axioma 15: Compahbilidad eon el producto

$$
\forall a, b \in \mathbb{R} \quad(a \leqslant b \wedge c>0 \Rightarrow a \cdot c \leqslant b \cdot c)
$$

Def: See $A \subseteq \mathbb{R}$ an conjonto:

- Un mímeno $c \in \mathbb{R}$ es una cota superior de A si $\forall a \in A, a \leq c$
- Un confunto se dice acotado superiormente si admide alguna esta supecior.

Def: Un mumero $S \in \mathbb{R}$ es el Supremo del congunto A si:
i) Ses una cota superia de A
ii) si \tilde{S} es cha cota superior de $A \Rightarrow \dot{S} \leq \tilde{S}$ (el supreuw es la nuanor de las cotos superiores de A)
obs: En genecal supremo no es lo amisuro que máximo.
Def: UM húruero a_{0} es el máximo de un conjunto A si:
i. $a_{0} \in A$
ii. $\forall a \in A \quad a \leqslant a_{0}$.
dbs: Li Ses el supreuo de $A \Rightarrow S$ es el máximo de A siysolo si $S \in A$.
$[a, b]=\{x \in \mathbb{R} / a \leq x \leq b\} \rightarrow$ intervalo cerrado:
Supremo de $[a, b]=b=$ máximo de $[a, b] ;[a, b)=\{x \in \mathbb{R} / a \leqslant x<b\}$
$(a, b)=\{x \in \mathbb{R} / a<x<b\} \rightarrow$ intecvalo abiecto: $(a, b]=\{x \in \mathbb{R} / a<x \leqslant b\}$
Suplemo de $(a, b)=b \rightarrow$ ho tiecue máximo.i

- Axiora 16: Axioma de completitud.
- Todo coufunto $A \subseteq \mathbb{R}$ ho vacío y acotado superionmenti tione supiems.

Ejeuplo: $A=\left\{x \in \mathbb{R} / x>0<x^{2}<2\right\}$
Sobsents que A es acotado Sieperiormente si $x \in A \Rightarrow x^{2}<2 \Rightarrow x^{2}<4=2^{2}$
y convo $x>0 \Rightarrow x<2$
$\Rightarrow 2$ es una cota superior de A
si pieuss $A \subseteq \mathbb{R} \Rightarrow \exists S=\sup (A)$

$$
A=(0, \sqrt{2}) \cap \mathbb{Q}
$$

$S=\sqrt{2}$ (el axions del supreus cho calle en Q)
Def: sea $A \subseteq \mathbb{R}$

- Un Nuinuero $c \in \mathbb{R}$ es una cota inferior de A si $\forall a \in A, C \leq a$
- Un eongunto $A \subseteq \mathbb{R}$ es acotado inferiormente si admite alguma cota unferior.

Def: Un nuimuero $i \in \mathbb{R}$ es el infimo del con funto $A \subseteq \mathbb{R}$ si
1- ies una cota ufferior de A
11. Si ies coda cuferior de $A \Rightarrow \tilde{i} \leq i \quad$ (. énfinuo es la nuayor de las cotas inferiores)

Teorema: todo eonjuuto $A \subseteq \mathbb{R}$ ho nacio y acotade inferionneute tiene ínfimo. de la Duun:

$$
\begin{array}{ll}
& a \leqslant b \Leftrightarrow-a \geqslant-b \\
& \operatorname{lnf}(A)=-\sup (-A) \\
& -A=\{-a / a \in A\} \\
S= & \operatorname{Sup}(A) \Leftrightarrow\left\{\begin{array}{l}
1 \text { S es esto meperiondeA } \\
2 \cdot \forall \varepsilon>0 \exists a_{\varepsilon} \in A / S-E<a_{E} \leqslant S
\end{array}\right.
\end{array}
$$

Dem: $\left.1_{n} 2\right) \Rightarrow 1,2^{\prime}$
Cano $\varepsilon>0$ S-E< 5 por 2) S. ε Mosuna cota superior de A
$\Rightarrow \exists a_{\varepsilon} \in A$ talque $s-\varepsilon<a_{\varepsilon}$.
Como $a_{\varepsilon} \in A, a_{\varepsilon} \leqslant S$ por 1)

1. $\left.2^{\prime}\right) \Rightarrow 1,2$) Lea \tilde{S} una cota suparior de A quq $S \leqslant \widehat{S}$.

Simponemor que no, $s>\tilde{S} \Rightarrow \varepsilon=S-\tilde{S}>0 \Rightarrow$ por $\left.2^{\prime}\right) \exists a_{\varepsilon} \in A / S-\varepsilon \leqslant a_{\varepsilon} \leqslant S$
ABSORDO, pues \tilde{S} es una cotor supenior $\quad \dot{S}-(\tilde{S}-\tilde{S})<a_{\varepsilon} \Rightarrow \tilde{S}<a_{\varepsilon}$ Luegr $S \leqslant \widetilde{5}$

$$
i=\inf (A) \Leftrightarrow\left\{\begin{array}{l}
1 \text { i es una cota iuferior de } A \\
2 . \forall \varepsilon>0 \text { existe } a_{\varepsilon} \in A / i \leq a_{\varepsilon}<i+\varepsilon
\end{array}\right.
$$

EUna sucesión de nómueros reales es una función $a: \mathbb{N} \rightarrow \mathbb{R} ; a(n)=a_{n}$

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{n}
$$

$a_{n} \rightarrow l \quad a_{n}$ converge $a l$
$l=\lim _{n \rightarrow \infty} a_{n} \quad l$ es el limuite de a_{n}.
Def: $a_{n} \rightarrow l \Longleftrightarrow \forall \varepsilon>0 \exists n_{0}=n_{0}(\varepsilon) /$ s $\forall n \geqslant n_{0}$ eutonces $\left|a_{n}-l\right|<\varepsilon$
Reformulación de los propiedades del supreuso:

- $S=\sup (A) \Leftrightarrow\left\{\begin{array}{l}1 . S \text { es cosa superior de } A \\ 2^{\prime \prime} \text {. Juna sucesión }\left(a_{n}\right) \subseteq A / a_{n} \rightarrow S\end{array}\right.$

Dem: $\left.\left.1,2^{1}\right) \Rightarrow 1,2^{\prime \prime}\right): \forall n \in \mathbb{N}$ considero $\varepsilon=\frac{1}{n}$
Por 2") exiote $5 \frac{-1}{n}<a_{n} \leqslant 5$

$$
\left.\Rightarrow\left|a_{n}-s\right|<\frac{1}{n} \Rightarrow a_{n} \rightarrow 5 \right\rvert\,
$$

$\left.1,2^{\prime \prime} \Rightarrow 1,2^{\prime}\right\rangle$: Supongotenges $a_{n} \rightarrow 5$. Por 1) $a_{n} \leqslant 5 \forall n$

$$
\text { si } n \geqslant n_{0}(\varepsilon), \quad\left|a_{n}-s\right|<\varepsilon, \quad s-\varepsilon<a_{n} \leqslant s
$$

Reformulación de las propiedades del unfinio:

$$
\text { - } i=\operatorname{iuf}(A) \Leftrightarrow\left\{\begin{array}{l}
1 \text {-iesuna cota inferior di } A \\
2-\exists a_{n} \in A / a_{n} \rightarrow i
\end{array}\right.
$$

SUCESIONES
Def: Uno sucesión $\left(a_{n}\right)$ de auirueror reales es una función $a ; \mathbb{N} \rightarrow \mathbb{R}, a(n)=a_{n}$
Def: Seo $\left(a_{n}\right)$ ona sucesión, $l \in \mathbb{R}$. Decimos que $a_{n} \rightarrow l$ o que $l=\lim _{n \rightarrow \infty} a_{1}$ (les el Límite de a_{n} - a_{n} converge a l) si pana todo $\varepsilon>0$ exote un $n_{0}=n_{0}(\varepsilon) \in \mathbb{N}$ tal que si $n \geqslant n_{0}$ eutonces $\mid a_{n}-l K \varepsilon$

$$
\left.\Rightarrow l-\varepsilon<a_{n}<l+\varepsilon: \frac{l-\varepsilon}{f \quad l, a_{n}}\right)^{l+\varepsilon}
$$

Desigualidad triangular.

$$
\begin{aligned}
& |x+y| \leqslant|x|+|y| \\
& |x-y| \geqslant|x|-|y| \\
& |x-y| \geqslant||x|-|y||
\end{aligned}
$$

Recordor: $|x|= \begin{cases}x & \text { si } x \geqslant 0 \\ -x & \text { si } x<0\end{cases}$

Obs: El línite de una Jucesión $\left(a_{n}\right)$, siexiste, es cénico.
Supongamos que:

$$
\begin{aligned}
& \left.\begin{array}{l}
a_{n} \rightarrow \ell \\
a_{n} \rightarrow \ell^{\prime}
\end{array}\right\} \Rightarrow\left|\ell-\ell^{\prime}\right|=\left|\left(l-a_{n}\right)+\left(a_{n}-l^{\prime}\right)\right| \leqslant\left|l-a_{n}\right|+\left|a_{n}-l^{\prime}\right| \\
& \underset{\substack{\text { in } n \geqslant m_{0}}}{\varepsilon \varepsilon}+\underset{\text { sin } \geqslant n_{0}^{\prime}}{2 \varepsilon} \underset{\text { si } n \geqslant \operatorname{mex}\left\{n_{0}, n_{0}^{\prime}\right\}}{2 \varepsilon} \\
& \left|\ell-\ell^{\prime}\right|<2 \varepsilon \Rightarrow l=\ell^{\prime} \\
& \sin n \geqslant \max \left(n_{0}, n_{0}^{\circ}\right) \quad(\forall \varepsilon)
\end{aligned}
$$

Efemplo (1) $\quad a_{n}=\frac{1}{n} \quad l=0$.
Propiedad de arquímedes: NGR tho está acotado.
Dado $x \in \mathbb{R}$ existe $n \in \mathbb{N}$ tal que $n>x$
Dem: si \mathbb{N} estuviera acotado Superionmente \Rightarrow teudría un supremo.
Prelaxiona de completitucl
Sea $S=\sup (\mathbb{N}) \quad n \leqslant S \forall n$ pero exiote $n_{0} \in \mathbb{N} / S-1<n_{0} \leqslant s$

$$
s \in \mathbb{R}
$$

$\Rightarrow 5<\frac{n_{0}+1}{\varepsilon \mathbb{N}}$ ABSURDO. El absundo provione de supouen \mathbb{N} acotods
Siguieuds con (1). superiormente \Rightarrow no lo está.

$$
\begin{aligned}
& a_{n}=\frac{1}{n}, l=0 \\
& \left|a_{n}-0\right|=\left|\frac{1}{n}\right|=\frac{1}{n}<\varepsilon \Leftrightarrow n>\frac{1}{\varepsilon}
\end{aligned}
$$

Dado $x=\frac{1}{\varepsilon}$, po la propiedad de arquimedes existe un $n_{0} / n_{0}>\frac{1}{\varepsilon} \Rightarrow \frac{1}{n} \leq \frac{1}{n_{0}}<\varepsilon$ paratodo $n \geqslant n_{0}$. Eutoncos $\left|\frac{1}{n}-0\right|<\varepsilon$ si $n \geqslant n_{0}$, a sea $\frac{1}{n} \rightarrow 0$

E(2) $a_{n}=\frac{n+1}{n}, l=1 ; a_{n}=1+\frac{1}{n}$

$$
\left|a_{n}-l\right|=\left|\frac{n+1}{n}-1\right|=\left|\frac{1}{n}\right|=\frac{1}{n}<\varepsilon \text { si } n \geqslant n_{0} \quad(\text { el de antes!) }
$$

Obs: Tho es lo cuinue el línuite de sucesiones qua el de funciones.

Límite de uno función: $\lim _{x \rightarrow+\infty} f(x)=\ell$
\Leftrightarrow sipara todo $\varepsilon>0 \quad \exists x_{0}=x_{0}(\varepsilon) \in \mathbb{R} /$ si $x \in \mathbb{R}$ y $x>x_{0} \Rightarrow|f(x)-l|<\varepsilon$
obs: si $\lim _{x \rightarrow+\infty} f(x)=l$ y $a_{n} \rightarrow+\infty \quad$ ($\forall r i>0$ exade n_{0} tal que si $n \geqslant n_{0}, a_{n}>M$)

$$
\begin{aligned}
& \Rightarrow \lim _{n \rightarrow+\infty} f\left(a_{n}\right)=l \\
& \operatorname{sim} \lim _{x \rightarrow+\infty} \operatorname{sen}(2 \pi x)=l, f(x)=\operatorname{sen}(2 \pi x) \\
& a_{n}=n, f\left(a_{n}\right)=0 \rightarrow l \\
& \left.\tilde{a}_{n}=n+\frac{1}{4}, f\left(a_{n}\right)=1 \rightarrow l\right] a b \cdot \operatorname{sun} d \theta
\end{aligned}
$$

(a) $a_{2} @_{n_{1}=3} a_{3} a_{5} a_{5} a_{6} a_{n_{1}=7} a_{1} a_{n_{5}=8} a_{9} a_{10}$

Def: Dada una sucasión $\left(\bar{a}_{n}\right)$, unio subsucesión es una sucesion dea lo forma $\left(a_{n k}\right)$ dande (nk) es una sucerión (infinita) estrictormout oreccente de Aníneros naturales $n_{1}<n_{2}<n_{3}<n_{9}<\cdots<n_{k}<n_{k+1}<$.
Obs: si $a_{n} \rightarrow l \Rightarrow a_{n} \mapsto l$ pano ecoalquiar submarión.
($n k \rightarrow+\infty$)
Ef(3). $a_{n}=(-1)^{n}=\begin{aligned} & +1 \text { sises pan } \\ & -1 \text { sises } p \text { as }\end{aligned}$

$$
\begin{aligned}
& a_{2 k}=(-1)^{2 k}=1 \Rightarrow 1 \\
& n k=2 k \\
& a_{(2 k+1)}=(-1)^{2 k+1}=- \\
& n_{k}=2 k+1 .
\end{aligned}
$$

$$
a_{n}=(-1)^{n}
$$

no tieve hímite.

Dem (delacobs): $\left|a_{m k}-l\right|<\varepsilon$ si $k \geqslant k_{0}$

$$
\left|a_{n-l}\right|<\varepsilon s i \quad n \geqslant n_{0}(\varepsilon) \quad \frac{n_{k} \geqslant k}{n_{k} \rightarrow+\infty} . n_{k} \geqslant n_{0} \text { si } k \geqslant k_{0}(\varepsilon)
$$

Def: $\left(a_{n}\right)$ es una Sucesión acoteda siexisten dos nú́rurios talesque $\forall n \in \mathbb{N} \quad m \leq a_{n} \leq M \quad\left\{\begin{array}{l}m=\text { esta upferior } \\ M=\text { eota mperior }\end{array} \Rightarrow m, M \in \mathbb{R}\right.$.
obs1. basta pedinque ralga $s i n \geqslant n_{0}$ con un no $F i j o$.
Obs2- Es equiralaute pedinque $\left|a_{n}\right| \leq \tilde{H} \quad \forall n$
Ejemplo: $(-1)^{n}$ es acotada pero noesconvirgente.
TEOREMA: Si $\left(a_{n}\right)$ es convergente $\left(a_{n} \rightarrow l, l \in R_{i}\right.$ ifin $\left.\operatorname{MiO!}\right)$ eutonces $\left(a_{n}\right)$ es a cotordos (no vale larecíprocas).
Dem: Pa Aipótesis $a_{n} \rightarrow l \Rightarrow$ dado $\varepsilon=1, \exists n_{0} /\left|a_{n}-l\right|<1$ Fin $\geqslant n_{0}$.

si $n \geqslant n_{0} \quad\left|a_{n}\right| \leqslant\left|a_{n}-\ell\right|+|\ell|<|\ell|+1$
Lea $M=\max \left(|\ell|+1,\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{n+11}\right|\right) \Rightarrow\left|a_{n}\right| \leq M \forall n$
$-M \leq a_{n} \leq M \Rightarrow\left(a_{n}\right)$ es AComadA.
Propiedad. ("ecero x acodado")
si $a_{n} \rightarrow$ of $\left(b_{n}\right)$ os acotada $\Longrightarrow a_{n} \cdot b_{n} \rightarrow 0$.
Dem: $\left|b_{n}\right| \angle M \forall n$ ean $M>0$.
dado $\varepsilon>0 \quad\left|a_{n}\right|=\left\lvert\, a_{n}-d<\frac{\varepsilon}{M}\right.$ si $n \geqslant n_{0}$.

$$
\begin{aligned}
& \Rightarrow\left|a_{n} \cdot b_{n}\right|=\left|a_{n}\right| \cdot\left|b_{n}\right|<\frac{\varepsilon}{M} \cdot M=\varepsilon, \sin \geqslant n_{0} \\
& \Rightarrow \forall \varepsilon>0 \quad a_{n} \cdot b_{n} \rightarrow 0 .
\end{aligned}
$$

Def: $\left(a_{n}\right)$ es monótona creciente si $\forall n, a_{n} \leq a_{n+1}$
(si $a_{n}<a_{n+1} \forall n$ se dice estrictamente creciente)
$\left(a_{n}\right)$ es monótond decreciente si $\forall n, \quad a_{n} \geqslant a_{n+1}$
(si $a_{n}>a_{n+1} \forall n$ se dice estrictamente decreciente)
$\left(a_{n}\right)$ es monótona sies nonótono creaente o monótona decrecieute

TECREMA: si $\left(a_{n}\right)$ es muonótona y acotada, es convergente (Lieu límite finito)

1. Si $\left(a_{n}\right)$ es monotono crecueute y acotada $\Rightarrow \lim a_{n}=\sup \left\{a_{n}\right\}$
2. S' $\left(a_{n}\right)$ es dionótonadeneceute y acotada $\Rightarrow \operatorname{Lim} a_{n}=\ln f\left\{a_{n}\right\}$

Dem: Hagaun el caso 1° (el 2 queda de Ejercicio)
Li $\left(a_{n}\right)$ es duarótona crecieute y acotada $\Rightarrow A=\left\{a_{n} / n \in \mathbb{N}\right\} \subseteq \mathbb{R}$ acotada.
Por el axioma de completitud exinte $s=\sup (A) \in \mathbb{R}$
10) $\left.a_{n} \leq s \forall n \in \mathbb{N}, 2^{\circ}\right)$ Dado $\varepsilon>0 \quad \exists n_{0} \in \mathbb{N} / s-\varepsilon<a_{n_{0}} \leq s \frac{s-\varepsilon, a_{1}}{\left(\frac{1}{a_{n}} a_{1}\right.}$
si $n \geqslant n_{0}, \left.a_{n_{0}} \leqslant a_{n} \Rightarrow\left|\begin{array}{c}5 \varepsilon<a_{n} \leqslant S \\ \forall n \geqslant n_{0}\end{array} \Rightarrow\right| a_{n}-5 \right\rvert\,<\varepsilon \forall n \geqslant n_{0} \Rightarrow a_{n} \rightarrow S$
g: $a_{n}=\left(1+\frac{1}{n}\right)^{n} \rightarrow l,(\operatorname{Def}$ de $l)$
este ejarcicia
esdó en el
librode Rey
pastor. (?)
Revisar porque no entendí
un Choto.

Qounos a der que an es Auonótona creciente y ACotadi.

$$
\begin{aligned}
a_{n} & =\sum_{k=0}^{n}\binom{n}{k} \frac{1}{n^{k}} \\
& =\sum_{k=0}^{n} \frac{1}{k!} \cdot\left(\frac{n}{n}\right) \cdot\left(\frac{n-1}{n}\right) \cdot\left(\frac{n-2}{n}\right) \cdots\left(\frac{n-k+1}{n}\right) \\
& =\sum_{k=0}^{n} \frac{1}{k!} \cdot 1 \cdot\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k+1}{n}\right) \\
& a_{n} \leq a_{n+1} \forall n
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\text { Kecerdar Binocnis de Necton } \\
\cdot(a+b)=\sum_{n=0}^{k}\binom{n}{k} \cdot a^{k} b^{n-k} \\
\cdot\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{(n(n-1)(n-2) \cdot(n-k+1)}{k!} \\
\cdot n!=1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots n
\end{array}\right.
$$

$$
0 \leq k \leq n
$$

$$
\text { sio} \leq 1 \leq k-1
$$

$$
1-\frac{1}{n+1} \leq 1-\frac{1}{n}
$$

$$
\frac{1}{n} \geqslant \frac{1}{n+1}
$$

$$
a_{n} \leqslant \sum_{k=0}^{n} \frac{1}{k!} \cdot 1
$$

$$
k 1=1 \cdot 2 \cdot 3 \cdot \cdots \cdot k \geqslant 2 \cdot 22 \cdots 2=2^{k-1} \quad \forall k \geqslant 2
$$

$$
\begin{gathered}
\leqslant 1+\sum_{k=1}^{n} \frac{1}{2^{k-1}} \leqslant 1+\underbrace{\sum^{\infty}}_{\sum_{k=0}^{\infty} \frac{1}{2^{k}} \frac{1}{2^{k-1}}}=1+\frac{1}{1-\frac{1}{2}}=1+2=3 \\
\quad \begin{array}{l}
1+x+x^{2}+x^{3}+\cdots+x^{k}=\frac{x^{k+1}-1}{x-1} \quad \text { si } x \neq 1 \\
=\sum_{j=0}^{k} x^{j}
\end{array}, .
\end{gathered}
$$

$$
\sum_{r=0}^{\infty} x^{j}=\lim _{k \rightarrow+\infty} \sum_{j=0}^{k} x^{r}=\frac{-1}{x-1}=\frac{1}{1-x}
$$

Serie geomífrico

$$
1+x+x^{2}+x^{3}+\cdots+x^{k}+\cdots=\frac{1}{1-x} \quad \text { si }|x|<1
$$

TEOREMA DE Bolzwa weierstrass:
Tada sucasión acotadar de húrueros reales tieue una Sub-Sucasión Convergeute.
Lema de los puntos cumbres:
Toda sucesión $\left(a_{n}\right)$ de núnueros resblas tienecura subsucesión nonótona.

Def: Un indice $k \in \mathbb{N}$ se dice un punto cumber de $\left(a_{n}\right)$ si $a_{n}\left\langle a_{k} \forall n>k\right.$
Sea C el enujuuto de todos la puutor eumbres de $\left(a_{n}\right)$:

$$
C=\left\{k \in \mathbb{N} / \forall n>k \quad a_{n}\left\langle a_{k}\right\}\right.
$$

CAso 1: Ces infinito, $C=\left\{n_{1}, n_{2}, n_{3}, \ldots, n_{k}, \ldots\right\}$
Onk es eshictameute decreciente, $\left(n_{k}\right)$ es una sucestón infinita $a_{n_{1}}>a_{n_{2}}>a_{n_{3}}>\cdots>a_{n_{k}}>\cdots \quad n_{1}<n_{2}<n_{3}<\cdots<n_{k}<\cdots$
Caso 2: Ces firito $\Rightarrow \exists \mathrm{m} /$ todo $k \geqslant n_{1}$ No es punto eumbre.
En particulon, n_{1} no es un puento cumbre $\Rightarrow \exists n_{2}>n_{1} / a_{n_{2}} \geqslant a_{n_{1}}$
Tomando $K=n_{2}$ Qemosque n_{2} dam poco es un puito amubre.
$\Rightarrow \exists n_{3}>n_{2}$ tal que $a_{n_{3}} \geqslant a_{n_{2}}$.
Tome $k=n_{3} \Rightarrow n_{3}$ no es puento curbre $\Rightarrow \exists n_{4} / a_{n_{4}} \geqslant a_{n_{3}}$.
An'siguiendo(por mducción) constuey a ana subsucosión $\left(a_{n k}\right) / a_{n k+1} \geqslant a_{n k}$
Dem (del teorema): Sea $\left(a_{n}\right)$ acotada. Por el luma de lospuntos amibes, existe una subsucesión $\left(a_{n k}\right)$ ruonótova.
Notemos que (ank) es acotada pues $\left(a_{n}\right)$ lo es. Como ($a_{n k}$) es monótona y acotada \Rightarrow es convergente.

Espacios vectoriales

$$
\begin{aligned}
& y=f\left(x_{1}, x_{2}, \ldots, x_{d}\right), d \in \mathbb{N} \\
& \mathbb{R}^{d}=\left\{\left(x_{i}, x_{2}, \ldots, x_{d}\right) / x_{j} \in \mathbb{R} \text { paca } 1 \leq j \leq d\right\} \\
& \mathbb{R}^{1}=\mathbb{R}, \text { recta real }
\end{aligned}
$$

$\mathbb{R}^{3}: \uparrow$ el espacio euclides.

$$
\left(P_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}^{d} ; \quad P_{n}=\left(x_{1}^{(n)}, x_{2}^{(n)}, \ldots, x_{d}^{(n)}\right) x_{d}^{\gamma} \in \mathbb{R}
$$

$$
P_{n}=\left(\frac{1}{n}, \frac{1}{2^{n}}\right) \rightarrow(0,0)
$$

$$
x_{1}^{(n)}=\frac{1}{n} \quad x_{2}^{n}=\frac{1}{2^{n}}
$$

$\frac{1}{p} \quad \frac{1}{0} \quad d(p, q)=|p-q| \rightarrow$ distaneia de p a q

- \mathbb{R}^{d} es un espacio vectaial sobre \mathbb{R}

$$
\begin{aligned}
& p=\left(p_{1}, p_{2}, \ldots, p_{d}\right) \in \mathbb{R}^{d} \\
& q=\left(q_{1}, q_{2}, \ldots, q_{d}\right) \in \mathbb{R}^{d} \\
& * p+q=\left(p_{1}+q_{1}, p_{2}+q_{2}, \cdots, p d+q d\right) \\
& A \lambda \in \mathbb{R}, \lambda \cdot p=\left(\lambda \cdot p_{1}, \lambda \cdot p_{2}, \cdots, \lambda \cdot p_{d}\right)
\end{aligned}
$$

Def: Dado unvector $P=\left(p_{1}, p_{2}, \cdots, p_{d}\right) \in \mathbb{R}^{d}$ definienos su norma euclidea (lony,tud):

$$
\begin{aligned}
& \|P\|=\sqrt{(\operatorname{vecas}|p|)} \\
& \varepsilon_{n} d=1 \rightarrow P=\left(p_{1}\right) ; \quad\|P\|=|P|
\end{aligned}
$$

- Eud=2: $x_{2} \int^{p=\left(x_{1}, x_{2}\right)}\|p\|^{2}=x_{1}^{2}+x_{2}^{2}$ por pitógoras.

$$
\Delta p-q=p+(-1) \cdot q=\left(p_{1}-q_{1}, p_{2}-q_{2}, \cdots, p_{d}-q_{d}\right)
$$

Distancia en \mathbb{R}^{d} :

$$
\begin{aligned}
d(p, q) & =\|p-q\| \\
& =\sqrt{\left(p_{1}-q_{1}\right)^{2}+\left(p_{2}-q_{2}\right)^{2}+\cdots+\left(p_{d}-q_{d}\right)^{2}}
\end{aligned}
$$

Def: Sea (P_{n}) una Aucesióri de puutos en el espacio $\mathbb{R}^{d}, P_{n}=\left(P_{1}^{n}, P_{2}^{n}, \cdots, P_{0}^{n}\right), P_{j}^{n} \in \mathbb{R}$ Limite EN \mathbb{R}^{d} : decimos que $P_{n} \rightarrow \overrightarrow{\vec{l}}^{*}=\left(l_{1}, \ldots, l_{d}\right) \in \mathbb{R}^{d}$ si $\forall \varepsilon>0$ existe $l=\lim _{n \rightarrow \infty} P_{n}$, an $n_{0}=n_{0}(\varepsilon) \in \mathbb{N}$ tal quesi $n \geqslant n_{0} \Rightarrow\left\|P_{n}-l\right\|<\varepsilon$
$[x]=$ parte enterade x
Ejcmplo:

$$
P_{n}=\left(1-\frac{1}{n}, \frac{1}{2^{n}}\right) \in \mathbb{R}^{2}, \quad l=(1,0)
$$

dado $\varepsilon>0$.

$$
\begin{gathered}
\left\|P_{n}-l\right\|=\left\|\left(1-\frac{1}{n}, \frac{1}{2^{n}}\right)-(1,0)\right\|=\left\|\left(-\frac{1}{n}, \frac{1}{2^{n}}\right)\right\|=\sqrt{\left(\frac{-1}{n}\right)^{2}+\left(\frac{1}{2^{n}}\right)^{2}}=\sqrt{\frac{1}{n^{2}}+\left(\frac{1}{2^{n}}\right)^{2}} \\
=\sqrt{\frac{1}{n^{2}}+\frac{1}{\frac{\left(2^{n}\right)^{2}}{n}}} \leqslant \sqrt{\frac{1}{n^{2}}+\frac{1}{n^{2}}}=\sqrt{\frac{2}{n^{2}}}=\frac{\sqrt{2}}{n}<\varepsilon \\
n<2^{n} \forall n \\
\forall n^{2} \\
0<\frac{1}{2^{n}} \leqslant \frac{1}{n} \Rightarrow\left(\frac{1}{2^{n}}\right)^{2} \leqslant \frac{1}{n^{2}}
\end{gathered} \quad \begin{gathered}
\quad<x<y \\
x^{2}<y^{2}
\end{gathered}
$$

Teorema: doda una sucesión $P_{n}=\left(P_{1} n, P_{2}, \ldots, \mathbb{R}_{d}^{n}\right) \in \mathbb{R}^{d}, l=\left(l_{1}, l_{2}, \cdots, l d\right) \in \mathbb{R}$
Entonces $P_{n} \rightarrow l$ síg sólo si $P_{j}^{n} \rightarrow l_{j}$ para tods $1 \leqslant j \leqslant d$.
Dem: "Solosi" Supongauns que $P_{j}^{n} \rightarrow l_{j} \forall j$, quereuns probsan que $P_{h} \rightarrow l$. Dado $\varepsilon>0$, para cadaj con $1 \leqslant j \leqslant d_{\text {, exiote }} n_{j} \in \mathbb{N} /\left|P_{j}^{n}-l_{j}\right|<\frac{\varepsilon}{\sqrt{n}} \mathcal{1} n \geqslant n_{j}$
Tomo $n_{0}=\operatorname{mex}\left(n_{1}, n_{2}, \ldots, n_{d}\right)$ eutonces si $n \geqslant n_{0}$ nole paratodo $1 \leqslant j \leqslant d$

$$
\left\|P_{n}-l\right\|=\sqrt{\left(P_{1}^{n}-l_{1}\right)^{2}+\left(P_{2}^{n}-l_{2}\right)^{2}+\cdots+\left(P_{d}^{n}-l_{d}^{n} R\right.} \leqslant \sqrt{\left(\frac{l}{d d}\right)^{2}+\left(\frac{\varepsilon}{\sqrt{d}}\right)^{2}+\cdots+\left(\frac{\varepsilon}{d d}\right)^{2}}=\sqrt{\frac{d \varepsilon^{2}}{d}}=\cdot \varepsilon
$$

faldala pank "ssi"s. suponemas que $P_{n} \rightarrow h$. qvq $p_{0}^{n} \rightarrow l_{j}$
Si $P \in \mathbb{R}^{d} \quad|P j| \leq\|P\|$ para todo j

$$
P_{j}\left|=\sqrt{P_{j}^{2}}-\leq \sqrt{P_{1}^{2}+P_{2}^{2}+\ldots+P_{d}^{n}}=\| P\right|=
$$

Vado $\varepsilon>0$ sabemorque $\exists a_{0} /\left\|P_{n}-l\right\|<\varepsilon \quad i^{n} \geqslant n_{0}$

$$
\left|P_{j}^{n}-l\right|=\left|\left(P_{n}-l\right)_{j}\right| \underset{\zeta P_{n} P_{1}}{\leqslant}\left\|P_{n}-l\right\|<\varepsilon
$$

eudefinitica $\left|P_{j}^{n}-\ell_{j}\right| \angle \varepsilon \sin n \geqslant n_{0} \quad \forall j \Rightarrow P_{j}^{n} \rightarrow \ell_{j}$

Conjuntosil-

$$
, \quad P \in \mathbb{R}^{d}, r>d, r \in \mathbb{R}
$$

Sus
suponeques
ibda.

1. La bola abierta de eeutrop p radio r es el eon pueto: $B\left(P_{r} r\right)=\left\{q \in \mathbb{R}^{0} /\|p-q\|<r\right\}$
2. La bola cercada de cento p g rodio r es el conguuto: $\bar{B}(p, r)=\left\{q \in \mathbb{R}^{d} /\|p-q\|<r\right\}$

$$
\begin{aligned}
& \text { \& } \mathbb{R}^{1}=\mathbb{R}: \begin{array}{l}
P-r \quad p \quad P^{+r}
\end{array} \quad B(P, r)=(P-r, P+r) \\
& \frac{P-r}{P} \quad \frac{P+r}{} \quad \bar{B}(P, r)=[P-r, P+r]
\end{aligned}
$$

def: $x_{0}\left(\mathbb{P}_{n}\right)$ uno sucasión er $\mathbb{R}^{d}, l \in \mathbb{R}^{d}$.

$$
P_{n} \rightarrow l \Leftrightarrow \forall \varepsilon>0 \exists n_{0} / P_{n} \in B(l, \varepsilon) \quad \forall n \geqslant n_{0}
$$

Def: Une conjunto U es un entorno de l si existe alguua bolo $B(l, \varepsilon)$ con $\varepsilon>0 / B(l, \varepsilon)$, $\subseteq U$

$$
P_{n} \rightarrow l \Leftrightarrow \forall \text { ertorno } U \text { de } l \exists n_{0} / \sin \geqslant n_{0}, P_{n} \in U
$$

Def: Sea $A \subseteq \mathbb{R}^{d}$ un eorujuido, lap puntos de \mathbb{R}^{d}. Se elasifican respecto a A.
1 Pes euterior a $A \Leftrightarrow \exists$ algín $\varepsilon>0 / B(P, \varepsilon) \subseteq A$
Notación: $A^{0}=$ el custerior de $A=\{P / P e s$ cuterior de $A\}$
2. Pos exterior a $A \Leftrightarrow \exists \mathrm{un} \varepsilon>0 / B(P, \varepsilon) \cap A=\varnothing$ (la bola Mo corta al conjuito)
\Leftrightarrow Pes euterioia $A^{c} \Rightarrow A^{e x t}=\left(A^{c}\right)^{0}$
3. Pestá enla frantera $($ oborde d $A)$ sit $\forall>0, B(P, \varepsilon) \cap A \neq \varnothing, y B(p, \varepsilon) \cap A^{c} \neq \varnothing$

Notación: $\partial A=$ Borde de A
Def:- On corfuuto en abiecto si todosmus puntor con cuteriores (equinale a dA $\cap A=\phi$)

- On lonjuato es cerrado si contiene a su frontero ($\partial A \subseteq A$)
- La elausura o adhecencia de A se define per $\bar{A}=A \cup \partial A$
- A es cerrado $\Longleftrightarrow A=\bar{A}$

Ejemplos.
1- $\operatorname{su} \mathbb{R}^{1}=\mathbb{R}:$

$$
\begin{aligned}
& A=[a, b]=\{x \in \mathbb{R} / a \leqslant x \leqslant b\} \\
& A^{0}=(a, b)=\{x \in \mathbb{R} / a<x<b\} \\
& \partial A=\{a, b\} \\
& \bar{A}=[a, b]
\end{aligned}
$$

A es cemado, A rio es cerrado.
2. $\mathbb{R}^{1}=\mathbb{R}$:

$$
\begin{array}{ll}
B=(a, b) & \text { A es abiento. } \\
B^{\circ}=(a, b) & B^{\text {ext }}=A^{\text {ext }} . \\
\partial B=\{a, b\} & \text { Aluos arrado }
\end{array}
$$

obs: Aesabiento $\Longleftrightarrow A^{c}$ es cenado (PARAPENSAR)
3. $\mathbb{R}^{1}=\mathbb{R}$.

$$
c=[a, b)=\{x \in \mathbb{R} / a \leqslant x<b\}
$$

$c^{\circ}=(a, b) \quad c^{\circ} \neq c \Longrightarrow C$ noes abiento.
$\partial c=\{a, b\} \quad C$ woos cerrodo, pues $b \in \partial c$ pero $b \notin C$.

$$
\bar{c}=[a, b]
$$

ObS: Para enalquier eorfuuto: $\frac{A}{A}$ es abierto
4. $\varepsilon \mathbb{R}^{2}: D=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} / x_{1}>0\right\}$

$D^{\circ}=D, D$ es abierto

$$
\begin{aligned}
& \partial D=\left\{\left(x_{1}, x_{2}\right) / x_{1}=0\right\} \\
& \bar{D}=\left\{\left(x_{1}, x_{2}\right) / x_{1} \geqslant 0\right\} \\
& D^{e x t}=\left\{\left(x_{1}, x_{2}\right) / x_{1}<0\right\}
\end{aligned}
$$

5. $E=\mathbb{R}^{2}$;
$E^{0}=E \Rightarrow \mathbb{R}^{2}$ es abiento

$$
\begin{aligned}
& \partial E=\phi ; \quad E^{\text {ext }}=\phi \\
& \bar{E}=\mathbb{R}^{2} \Rightarrow \text { es cerrodo. }
\end{aligned}
$$

G- $\varnothing \subseteq \mathbb{R}^{2}$ es abiento or cerrado eu \mathbb{R}^{2}.

$$
\begin{aligned}
& F=\{D\} \\
& F^{e x t}=\mathbb{R}^{d} \backslash\{P\} \\
& F_{2}^{\circ}=\varnothing ; \partial F=\{P\} ; \bar{F}=F \quad \text { escerodu. }
\end{aligned}
$$

Obs: $A \subseteq \mathbb{R}^{d}$ es absientoy currodo a la avez $\Leftrightarrow A=\mathbb{R}^{d} \otimes A=\varnothing$
(Tvo lo qaumos a deumstrar ahova).
dbs: $P \in \bar{A} \Longleftrightarrow$ existe una sucesión $\left(P_{n}\right) \in A$ tal que $P_{n} \longrightarrow P$.
Def: P es un punto de acumulaciónd $A \Leftrightarrow \exists$ aua sucesión cufinita de purtos dotos dintintos tal que $P_{n} \rightarrow P$

7. $\quad \mathbb{R} \subseteq \mathbb{R}$
$\partial \mathbb{R}=\mathbb{R} ; \quad \dot{Q}^{\circ}=\phi, \mathbb{Q}^{\text {ext }}=\phi \rightarrow$ hooshiabientomicerrado.

TEOREMA: Las bolas abientas son abiertas \}. Recondar: desigunldad Triangular Dem: $B=B(p, n)$. quq $B C B^{\circ}$

$\begin{cases}\left.\sqrt[q]{ }+\frac{p}{}\right) & \|p+q\| \leqslant\|p\|+\|q\| \\ \sqrt{p-q} & \|p-q\| \geqslant\|p\|-\|q\| \\ \|p-q\| \geqslant|\|p\|-\|q\||\end{cases}$

Afinuo $B(q, \varepsilon) \in B$: Sea $x \in B(q, \varepsilon)$. qv $x \in B=(p, r)$

$$
\begin{aligned}
& \|x-p\|=\|(x-q)+(q-p)\| \leqslant\|x-q\|+\|q-p\|<\varepsilon+\|q-p\|=r, \quad x \in B(q, \varepsilon) \\
& \Rightarrow x \in B(p, r)=B
\end{aligned}
$$

Luego, $q \in B^{0}$, Como rale $\forall q \in B \Rightarrow B$ es abrierta.
(Ejercicio: Dem. "todos las bolas cerradas son conjuutos cenados").

Repaso Esprcio eudideo:
$\mathbb{R}^{d}=\left\{P=\left(P_{1}, P_{2}, \ldots, P_{d}\right) / P_{j} \in \mathbb{R}\right.$ para $\left.1 \leq j \leq n\right\} ; d \in \mathbb{N}$: dimención.
Vorma: $\|P\|=\sqrt{P_{1}^{2}+P_{2}^{2}+\cdots+P_{d}^{2}}$
distarcia: $d(p, q)=\|p-q\|, p, q \in \mathbb{R}^{d}$
$\left(P_{n}\right) \in \mathbb{R}^{d}, \quad l \in \mathbb{R}^{d}:$

$$
\begin{aligned}
& P_{n} \rightarrow l \Leftrightarrow \forall \varepsilon>0 \exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}: n \geqslant n_{0} \Rightarrow\left\|\mathbb{P}_{n}-l\right\|<\varepsilon \\
& B(p, r)=\left\{q \in \mathbb{R}^{d} /\|q-p\|<r\right\}
\end{aligned}
$$

Def: $A \subseteq \mathbb{R}^{d}:$ Ass acotado $\Leftrightarrow \exists$ una bola $B(p, r)$ con $r>0 / A \subseteq B(P, r)\binom{$ Puedo tomar }{$P=\vec{O} \in \mathbb{R}^{d}}$

$$
\Leftrightarrow \exists r>0 / \forall q \in A \quad\|q\|<r
$$

Ejeuplo: en $\mathbb{R}^{2}: Q=\{(x, y) /|x| \leqslant 1 ;|y| \leqslant 1\}$
es acotado

Uhe sucesión $\left(P_{n}\right) \in \mathbb{R}_{\text {s }}^{\prime}$ acotada $\Longleftrightarrow A=\left\{P_{n}: n \in \mathbb{N}\right\}$ es acotodo.
Teorema de bolzano-wererstrass en \mathbb{R} :
Toda sucesión $\left(P_{n}\right) \in \mathbb{R}^{d}$ acotada tieue una subsucesión convergente.
Dem lo haceutos eu el caso $d=2 ; \quad p_{n}=\left(x_{n}, y_{n}\right) . \quad x_{n} \in \mathbb{R}, y_{n} \in \mathbb{R}$

Porhipóterin, P_{n} es acotada $\Rightarrow \exists>0 / H n\left\|P_{n}\right\|<1$
$\left.\left|x_{n}\right| \leqslant\left|P_{n}\right| \Rightarrow\left|x_{n}\right|<r\right\}$ Tauto $\left(x_{n}\right)$ corvo $\left(y_{n}\right)$ son $\left|y_{n}\right| \leqslant\left\|P_{n}\right\| \Rightarrow\left|y_{n}\right|<r\left\{\right.$ Sucesions acotadosen $\mathbb{R}\left\{\begin{array}{l}x_{n} \in(-r, r) \\ y_{n} \in(-r, r)\end{array}\right.$

$$
P_{n} \in B(0, r) \subseteq Q=\left\{(x, y) \in \mathbb{R}^{2} /|x|<r,|y|<r\right\}
$$

como $\left(X_{n}\right)$ as acotada en $\mathbb{R} \Rightarrow \exists$ una subsucsion $\left(X_{n_{k}}\right)$ de $X_{n} / X_{n_{k}} \rightarrow l_{1} \in \mathbb{R}$ (por B-ween \mathbb{R}) Conidero la sucesión $\left(Y_{n_{k}}\right)$ es una subsucesión de $\left(Y_{n}\right) \Rightarrow$ es acotada.
Brteor B-wen $\mathbb{R} \Rightarrow \exists$ una subsucusion $\left(Y_{n_{k_{j}}}\right)$ convergute: $Y_{n_{k_{j}}} \rightarrow \ell_{2} \in \mathbb{R}$ evando $j \rightarrow+\infty$.

dos: End dirueusiones liay que repetin el preeceso d veces:

$$
\begin{aligned}
& \mathbb{R}^{d}=\left\{\left(x_{n}^{\prime}, x_{n}\right) / x_{n}^{\prime} \in \mathbb{R}^{d-1}, x_{n} \in \mathbb{R}\right\} \\
& \left(x^{\prime} \in \mathbb{R}^{d-1}\right. \\
& \left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}\right)
\end{aligned}
$$

Def: Uu conjueto $k \subseteq \mathbb{R}^{d}$ se dice compacto $\Leftrightarrow \forall$ sucesion $\left(P_{n}\right) \subseteq K$ se puede extaies ana subsucasion. (Pnk) dal que $\exists l \in \mathbb{R}^{d} / P_{n k} \rightarrow l y \quad l \in K$.
Cordario UM eonjuuto $K \in \mathbb{R}^{d}$ es compacto siysobosi K es cernado y a cotads.
Dem: "Sdosi": Suponews K es cerrado y acefads. Viauna que es compacto:
Sea $\left(P_{n}\right) \subseteq k$. Comus K es a cotado $\Rightarrow\left(P_{n}\right)$ es a cosada.
Por el terenna de B-W Juma subsucesión converguide $P_{n_{k}} \rightarrow \ell \in \mathbb{R}^{d}$
Como K es cerrado, $l \in K$.
Recordon: K es cerrado $\Leftrightarrow k=\bar{k}$

$$
\text { - lek } \Leftrightarrow \text { Juna sucesión }\left(q_{n}\right) \subseteq k / q_{n} \rightarrow l .
$$

Si": Suponganuos que k es eorupacto. Queraums ren que es cerrodo y a cotads.

- Ii k mo furaacotado, paraca da $n \in \mathbb{N}$ existivía Pn $\in K /\|P\| \| n$.

Eutonces (Pn) no tieue Nimugreua subsucesión convergent $\left(\frac{\text { Puspl } l \text { Pal } l \rightarrow \infty) \text { Absurdo. }}{\text { An }}\right.$.

- Absurdal \Rightarrow luego, k es acotado.

Falta ver que K es eerrado. Sisuponeuror que K wo es ecrrado $\Rightarrow k \neq \bar{k} \Rightarrow$
\Rightarrow existel \bar{k} tal que $\ell \notin k \quad(l \in \partial k$ pero $l \notin k)$
Como lē, \exists una sucesión $\left(P_{n}\right) \subseteq K / P_{n} \rightarrow \ell$.
. Comio k es compacto existe una subsucesion ($P_{n k}$)/Pnn $\rightarrow \tilde{l} \in k$
Como $P_{n} \rightarrow l \Rightarrow P_{n_{k}} \rightarrow l \Rightarrow l=$ l’an por unicidad del Limite
Absurdo pues $[\underset{l}{l} \notin k]$ El absunds provione de suporen que k wo es Ef $k\}$
Ejumplo: $A=\{(x, y) / x \geqslant 0\}$ es cerrado pero no a cotodo $(1,0) \in A ; n \in \mathbb{N}$

$$
\begin{aligned}
& \text { si }\left(x_{n}, y_{n}\right) \rightarrow\left(l_{1}, l_{2}\right) \\
& \text { of } x_{n} \geqslant 0+1 \Rightarrow l_{1} \geqslant 0
\end{aligned}
$$

Funciones
Def: Una fención $f: A \rightarrow B$ del conjunto A en el congunto B esuna regla (una relación) que a cada elemerto X del conjuuto A le asigna un único elemento $f(x)$ del conjunto B.

- A se llama el dominio de f
- B se llama el codominio.
$\operatorname{Im}(f)=\{y \in B / \exists$ un $x \in A$ talque $y=f(x)\} \rightarrow$ mageu de f.

$$
A \subseteq \mathbb{R} ; \quad f: A \rightarrow \mathbb{R}
$$

Gráfics de f :

$$
=\left\{(x, y) \in \mathbb{R}^{2} / x \in A, y=f(x)\right\}
$$

Ejeuplos: $f(x)=\frac{1}{x} \Rightarrow f: \mathbb{R}_{\neq 0} \longrightarrow \mathbb{R}$
$\begin{aligned} & \text { - } f(x)= x \\ & g(x)=|x|^{2}\end{aligned} \rightarrow \quad f, g: \mathbb{R} \rightarrow \mathbb{R}\left\{\begin{array}{l}f=g \text { pues } f(x)=g(x) \\ \text { para dodo } x \in \mathbb{R} .\end{array}\right.$

- $R: D \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& \operatorname{graf}(f)=\left\{(x, y, z) \in \mathbb{R}^{3} / z=f(x, y) ;(x, y) \in D\right\} \\
& x|y| f(x, y) \quad(a, b, c) \neq(0,0,0)
\end{aligned}
$$

(a, b, c) $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$ un plano en \mathbb{R}^{3}
cs normaldel plawo.

$$
y=\left(y_{1}, y_{2}, \ldots, y_{d}\right)
$$

$$
\langle x, y\rangle=x_{1} \cdot y_{1}+x_{2} y_{2}+\cdots+x_{d} y_{d}
$$

$$
\langle x, x\rangle=\|x\|^{2}
$$

$|\langle x, y\rangle| \leqslant\|x\| \cdot\|y\|$ desigualdad de Canchy-Schear,

$$
=f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R} ; \operatorname{graf}(f) \subseteq \mathbb{R}^{d+1}=\left\{\left(x_{1}, x_{2}, \ldots, x_{d}, x_{d+1}\right) / x_{d+1}=f\left(x_{1}, x_{2}, x, x_{d}\right)\right\}
$$

$$
\begin{aligned}
& x=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \quad\langle x, y \in \mathbb{R}
\end{aligned}
$$

LIMTE DE UNA FUnción

$$
f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, l \in \mathbb{R}^{m}
$$

$x_{0} \in D$ (wo aislada: $\forall \varepsilon>0 . \exists$ algúminotropuuto distindode Den $B\left(x_{0}, \varepsilon\right)$)

(el >o hace que $X \neq X_{0}$)
Ef: $n=m=1, D=\mathbb{R}-\{0\}$.

$$
f(x)=\frac{\operatorname{sen} x}{x}
$$

$\lim _{x \rightarrow 0} \frac{\operatorname{sen} x}{x}=1$

$$
\forall \varepsilon>0 \exists \delta>0 / 0<|x| \delta \Rightarrow\left|\frac{\operatorname{sen} x}{x}-1\right|<\varepsilon
$$

g: $g(x)= \begin{cases}\frac{\operatorname{sen} x}{x} & \text { si } x \neq 0 \\ 8 & \text { si } x=0\end{cases}$
$\lim _{x \rightarrow 0} g(x)=1 \neq 8=g(0) \Rightarrow g$ hio es continuma en 0.
Ej:

$$
\begin{aligned}
& \left.\operatorname{Lim}_{(x, y) \rightarrow(2,3)} x \cdot y=6=f(f ; 3,3)\right)^{f}(x, y)=x \cdot y ; \\
& \\
& \\
& D=\mathbb{R}^{2} ; l=6 ; \mathbb{R}^{2} \rightarrow \mathbb{R} . \\
&
\end{aligned}
$$

(8) Sea $d<\min \left(1, \frac{\varepsilon}{6}\right)$

$$
\int\left\{\begin{array}{l}
h=x-2 \\
k=y-3
\end{array}\right.
$$

$\cdot|f(x, y)-6|=|x \cdot y-2 \cdot 3| \Rightarrow$ aptico un cambio de nariable: $\left\{\begin{array}{l}x=2+h \\ y=3+k\end{array}\right.$

$$
=|(2+h)(3+k)-2 \cdot 3|=|2 \cdot 5+3 h+2 k+h \cdot k-2 \cdot 3| \leqslant 3|h|+2|k|+|h| \cdot|k| \text { ders.g. }
$$

$$
\begin{array}{ll:}
\|(x, y)-(2,3)\|<\delta & \|\leqslant\|(h, k) \| \\
\|(x-2, y-3)\|<\delta & |k| \leqslant\|(h, k)\| \\
\|(h, k)\|<\delta & \text { si }\|(x, y)-(2,3)\|<\delta \Rightarrow\|\mid<\delta y\|
\end{array}
$$

- Def: sea $f: \Delta \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
- fes contínva en un panto $x_{0} \Leftrightarrow x_{0} \in D$ y $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$
- Pescontiana $(\operatorname{en} D) \Leftrightarrow f$ es contiruma en $x_{0} \forall x_{0} \in D$.

Def: $\lim _{x \rightarrow x_{0}} f(x)=\ell \Leftrightarrow$ si \forall sucesion $\left(P_{n}\right) \in D / P_{n} \rightarrow x_{0}$ y $P_{n} \neq x_{0}$ se cumple que $f\left(P_{n}\right) \rightarrow \ell$
Obs: $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} ; \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=\left(l_{1}, l_{2}\right)$

$$
\begin{aligned}
& f(x, y)=\left(f_{1}(x, y), f_{2}(x, y)\right) \Leftrightarrow \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f_{1}(x, y)=l_{1} \wedge \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f_{2}(x, y)=l_{2} \\
& f_{1}, f_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R} .
\end{aligned}
$$

Funciones continuas
Def: sea $f: D \subseteq \mathbb{R}^{d} \longrightarrow \mathbb{R}^{m}$

- f es continua eu un punto $x_{0} \in D$ sif $f\left(x_{0}\right)$ estó definida $y \lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$

$$
\longleftrightarrow \forall \varepsilon>0 \exists \delta>0 / \text { si } x \in D y \frac{\left\|x-x_{0}\right\|<}{\text { norima en } \mathbb{R}^{d}} \delta \Rightarrow \frac{\left\|f(x)-f\left(x_{0}\right)\right\|_{\text {norma en } \mathbb{R}^{m}}<\varepsilon}{\|}
$$

- fes continua (en $D) \Leftrightarrow f$ es continua en $x_{0} \forall x_{0} \in D$.

Egemplo: $f(x)=\frac{1}{x} ; D=\{x \in \mathbb{R} / x \neq 0\} ; f: D \rightarrow \mathbb{R}$
Veamosque f es contimua en D. Seo $X_{0} \in D\left(X_{0} \neq 0\right) \Rightarrow\left|x-X_{0}\right|<\delta$.

$$
\left|f(x)-f\left(x_{0}\right)\right|=\left|\frac{1}{x}-\frac{1}{x_{0}}\right|=\left|\frac{x_{0}-x}{x^{\prime} \cdot x_{0}}\right|=\frac{\left|x_{0}-x\right|}{|x| \cdot\left|x_{0}\right|}<\frac{\delta}{|x|| | x_{0} \mid} \text { © } \frac{1}{x_{0}-\delta} x_{0} x_{0}+\delta
$$

Teugo que acoton x. concridero la dess cualdad triaugulan:

$$
\begin{aligned}
& |x|=\left|x_{0}-\left(x_{0}-x\right)\right| \geqslant\left|x_{0}\right|-\left|x_{0}-x\right| \geqslant\left|x_{0}\right|-\delta \geqslant \left\lvert\, \frac{x_{0}\left|-\frac{\left|x_{0}\right|}{2}\right|=\frac{\left|x_{0}\right|}{2}}{\text { sizo conel exucicis. }}\right.
\end{aligned}
$$

Sijo conel ejucicia.

$$
\circledast \frac{\delta}{\left|x_{1}\right| \cdot\left|x_{0}\right|}<\frac{\delta}{\frac{\left|x_{0}\right| \cdot\left|x_{0}\right|}{2}}=\frac{2 \delta}{\left|x_{0}\right|^{2}}<\varepsilon \rightarrow \text { paque } \delta<\frac{\varepsilon}{2}\left|x_{0}\right|^{2}
$$

Dado E>0elifo $\delta<\min \left(\frac{\left|x_{0}\right|}{2} ; \frac{\varepsilon}{2}\left|x_{0}\right|^{2}\right.$
Obs: Eu eskejeupls el δ depande del peuto X_{0} (no es el Miomis para todes $\left.\operatorname{los} x_{0}\right) \Rightarrow$ f no es unifortemente contina en D.
Def: Si el δ se prede elegn cudependieutede x_{0} eutonces f es uniformemente Continua en D.
Def: $\lim _{x \rightarrow x_{0}} f(x)=l \Leftrightarrow \forall$ sucesion $\left(P_{n}\right)$ dalque $P_{n} \rightarrow x_{0}$ y $P_{n} \neq x_{0} \forall_{n}$ eudences $f\left(P_{n}\right) \rightarrow l$. Corolario: $f: \Delta \subseteq \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$; fsocontioua en $X \in D \Leftrightarrow \forall$ suación $\left(P_{n}\right) \in D$ se cimple que $f\left(P_{n}\right) \rightarrow f\left(x_{0}\right)$.
Ejemplo: $f: \mathbb{R}_{\neq 0} \rightarrow \mathbb{R} ; f(x)=\frac{1}{x} \quad \dot{\subset} \exists \lim _{x \rightarrow 0} f(x)$? © Peedo de finin $f(0)$ para que f sea contimina en $x_{0}=0$?

$$
\begin{aligned}
& P_{n}=\frac{1}{2 \pi n} \rightarrow 0 . f\left(P_{n}\right)=\operatorname{sen}(2 \pi n)=\operatorname{sen} 0=0 \rightarrow 0 . \\
& \text { NMN } \widetilde{P}_{n}=\frac{1}{\frac{\pi}{2}+2 \pi n} \rightarrow 0 ; f\left(\tilde{P}_{n}\right)=\underbrace{\operatorname{sen}(x+2 \pi)}_{\operatorname{sen}\left(\frac{\pi}{2}+2 \pi n\right)}=\operatorname{sen}\left(\frac{\pi}{2}\right)=1 \rightarrow 1 \\
& \operatorname{sen}(x+2 \pi n)=\operatorname{sen} x \text {. }
\end{aligned}
$$

A $\lim _{x \rightarrow 0} f(x)$. ho soporible definin $f(0) / f$ sea continuna eu $x_{0}=0$.

Def: $\lim _{x \rightarrow x_{0}} f(x)=l \Leftrightarrow \forall \varepsilon>0 \exists \delta>0 \forall x \in D \quad\left(0<\left\|x-x_{0}\right\|<\delta \Rightarrow\|f(x)-l\|<\varepsilon\right)$
Dem: \because Supongamosque $\lim _{x \rightarrow x_{0}} f(x)=l$ y sea $\left(P_{n}\right)$ una sucrión tal que $P_{n} \rightarrow x_{0}$ y $P_{n} \neq X_{0}$. Quererios ser que $f\left(P_{n}\right) \rightarrow l$
Dado e >0, sea $\delta>0$ el que le conasponde per la def de límite de función.

$$
\left(\text { si } x \in D y \quad<\left\|x-x_{0}\right\|<\delta \Rightarrow\|f(x)-l\|<\varepsilon\right)
$$

Comiv $P_{n} \rightarrow x_{0}, \exists n_{0}=n_{0}(\delta) /\left\|P_{n}-x_{0}\right\|<\delta \sin n \geqslant n_{0}$,
Como $P_{n} \neq x_{0}$, $\quad \ll\left\|P_{n}-x_{0}\right\|<\delta$. luego $\left\|f\left(P_{n}\right)-l\right\|<\varepsilon \forall n \geqslant n_{0} \Rightarrow f\left(P_{n}\right) \rightarrow l$.
ESuponemos que paratoda sucesión $\left(P_{n}\right) \in D P_{n} \rightarrow x_{0} \ldots \forall n P_{n} \neq x_{0}$. eutonces $f\left(P_{n}\right) \rightarrow l$. Quieno ver que $\lim _{x \rightarrow x_{0}} f(x)=l$. lo hacumes po el ABSURD:

- Negaciones

$$
\begin{aligned}
& \sim(\forall x P(x)) \Leftrightarrow \exists x \sim(P(x)) \\
& \sim(\exists x P(x)) \Leftrightarrow \forall x \sim(P(x)) \\
& \sim(P(x) \Rightarrow Q(x)) \Leftrightarrow P(x) \wedge \sim Q(x)
\end{aligned}
$$

- Negación de la definición de línite.

$$
\lim _{x \rightarrow x_{0}} f(x)=l \Longleftrightarrow \exists \varepsilon>0 \forall \delta>0 \quad \exists x \in D\left(0<\left\|x-x_{0}\right\|<\delta \wedge\|f(x)-l\| \geqslant \varepsilon\right)
$$

Es decin: ho es cuertoque $\lim _{x \rightarrow x_{0}} f(x)=l$ equivale a decia que existe un $\varepsilon>0$ dal que paratoda $\delta>0$ existiun $x=x(\delta)$ dal que $0<\left\|x-x_{0}\right\|<\delta$ pero sinu eu bongo $\|f(x)-l\| \geqslant \varepsilon$.
Considerando lo auterior Coutimuausos con la demostacién.
Tonuo $\delta_{M}=\frac{1}{n}(n \in \mathbb{N})$ Para cada uno tengo $x\left(\delta_{n}\right)=P_{n}$, que cumple $0<\left\|P_{n}-x_{0}\right\|<\delta=\frac{1}{n}$ $A\left\|f\left(P_{n}\right)-\ell\right\| \geqslant \varepsilon$.
eutonces $P_{n} \rightarrow x_{0}$ Porlo hipóterio $f\left(P_{n}\right) \rightarrow l$ ABSURDO.

$$
P_{n} \neq x_{0}
$$

hego $\lim _{x \rightarrow x_{0}} f(x)=l$.

Teorema de bolzano: $f:[a, b] \rightarrow \mathbb{R}$ es contimuo en $[a, b]=\{x \in \mathbb{R} / a \leq x \leq b\}$. Eutoress, si $(f(a)>0$, $f(b)<0) \vee(f(a)<0 \wedge f(b)>0) \Rightarrow 0$ sea, si $f(a) \cdot f(b)<0$ \Rightarrow excose $X_{0} \in(a, b)$ talque $f\left(x_{0}\right)=0$.
Obs: El X_{0} puede no ser único:

Dem: Suponemis que $f(a)>0$ y $f(b)<0$ (si no cambiaums por f). Sea $C=\{x \in[a, b] / f(x)>0\}, C$ es no nació, $a \in C$.
Cestá acotado Superiomeute $(C \subseteq[a, b] \Rightarrow b$ es cuna cota superior) Por el axioma de completitud exiote $x_{0}=\sup (c)$. Querenos ver que $f\left(x_{0}\right)=0$.
Lema: (Las funciones continuas mantienenel signo en un entorno)

1. Si $f\left(x_{0}\right)>0$ eutonces $\exists \delta>0$ tal que si $x \in[a, b] y\left|x-x_{0}\right|<\delta \Rightarrow f(x)>0$.

2- $\operatorname{si} f\left(x_{0}\right)<0$ entouces $\exists \delta>0 /$ si $x \in[a, b] \wedge\left|x-x_{0}\right|<\delta \Rightarrow f(x)<0$.
Dem del lema:

$$
\begin{aligned}
& \text { 1. si } f\left(x_{0}\right)>0 \operatorname{sea} \varepsilon=\frac{f\left(x_{0}\right)>0, \operatorname{sen} \delta>0 /\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon}{f(x)=f\left(x_{0}\right)-\left(f\left(x_{0}\right)-f(x)\right) \geqslant f\left(x_{0}\right)-\left|f\left(x_{0}\right)-f(x)\right| \geqslant f\left(x_{0}\right)-\varepsilon=\frac{f\left(x_{0}\right)}{2}>0}
\end{aligned}
$$

luego $f(x)>0$ si $\left|x-x_{0}\right|<\delta$.
2-si $f\left(x_{0}\right)<0 \Rightarrow-f\left(x_{0}\right)>0$, -fes sta función continua, le aplico 1.

$$
\Rightarrow \exists \delta>0 / \sin |x-x=|<\delta \Rightarrow-f(x)>0 \Rightarrow f(x)<0
$$

Continuanos con la dem. del ferema:
Supongamos (po el ABSURD0) que $\left.f\left(x_{0}\right) \neq 0\right) \Rightarrow f\left(x_{0}\right)>0 \vee f\left(x_{0}\right)<0$.
CaSo1: $: f\left(x_{0}\right)>0$: Porel lema $\exists \delta>0 /$ si $\left|x-x_{0}\right|<\delta$ y $x \in[a, b] \Rightarrow f(x)>0 \quad \frac{-a^{c} c_{1}^{b-\delta_{1}}}{a^{c}}$ observenos que $X_{0} \neq b$ paes $f(b)<0$ por lema $\exists \delta_{1}>0 / f(x)<$ on $\left(b-\delta_{1}, b\right] \Rightarrow c c\left[a, b-\delta_{1}\right]$ luego $b-\delta_{1}$ somua cota superionde $C \Rightarrow X_{0}=\sup (c) \leqslant b-\delta_{1}<b$. sillamo $X_{1}=x_{0}+\frac{\delta}{2} x_{1} \in\left[x_{0}, x_{0}+\delta\right) \quad$ a $\frac{x_{0}}{x_{0}-\frac{1}{2}} x_{0+\sigma} b x_{1}<x_{0}$.

$$
f\left(x_{1}\right)>0 \Rightarrow x_{1} \in C \Rightarrow x_{1} \in C \Rightarrow x_{1} \leqslant x_{0}=\sup (c) \Longrightarrow A B S \cup R D O .
$$

slabsurdo provirio de Juponen que $f\left(x_{0}\right)>0$.
luego, esto no puede pasar.

Casor: $f\left(x_{0}\right)<0$: eutonces, de caultapor el lema, $\exists \delta>0 / f(x)<0$ i $\left|x-x_{0}\right|<\delta$.
Por Hipótesis, $f(a)>0$, poa el lema $\exists \delta_{2}>0 / f(x)>0$ si $x \in\left[a, a+\delta_{2}\right)$
Tormando $x=a+\frac{\delta_{2}}{2}, f\left(a+\frac{\delta_{2}}{2}\right)>0 \rightarrow a+\frac{\delta_{2}}{2} \in C \Rightarrow q_{q_{1}+\frac{\delta_{2}}{2}}^{2} \leqslant x_{0}=\sup (c)$
$\Rightarrow a<x_{0} \quad\left(p u e s \delta_{2}>0\right)$
Coroo x_{0} es el suprimo de $C \Rightarrow \exists x_{2} \in C / x_{0}-\delta<x_{2} \leqslant x_{0}$
$\Rightarrow f\left(x_{2}\right)>0$ pues $x_{2} \in C$.
Ypor oho $\left|x_{0}-x_{2}\right|<\delta$ eutonces $f\left(x_{2}\right)<0$ ABSURDO!
\therefore Coruo $f\left(x_{0}\right)$ no puede ser poritino ni kugationo, debe ser $f\left(x_{0}\right)=0$
Def: Ure conjuuto $K \subseteq \mathbb{R}^{d}$ se dice Compecto si \forall sucerión $\left(P_{n}\right) \subseteq K$ existe una subsucesión $\left(P_{n_{k}}\right)$ y un puuto $\ell \in K$ dal que $P_{n_{k}} \rightarrow \ell$.
Corolario del Leorema de B-W:
K es compacto $\Leftrightarrow K$ es cerrado y acotado:
Su unter valo cerrado eu $\mathbb{R}[a, b]$ es compacto.
TEOREMA DE wEIERSTRASS: Sea $K \subseteq \mathbb{R}^{d}$ compactory $f: k \rightarrow \mathbb{R}^{r}$ continua:

1. Fos acotada en $k ; \exists \alpha, \beta \in \mathbb{R} / \alpha \leq f(x) \leq \beta \forall x \in K$.
\rightarrow (la imacen de f estríacotada superiomente):
2. Sear $m=\inf _{x \in \mathbb{k}} f(x) ; M=\sup p_{x \in k} f(x)$ (por 1 astón bien de finidor). entonces exinteu $x_{1} \in k$ tales $q u e ~ f\left(x_{1}\right)=m$ mímimo dif en k $x_{2} \in k \quad f\left(x_{2}\right)=M$. máx mono di fen K.
o sea, falcouza su múximury míminuo en k.
Dem: 1 Neaunos que f es acotada superionnente en k (o sea $\exists \beta$).
Sino, $\forall n \in \mathbb{N} \exists P_{n} \in K, \quad f\left(P_{n}\right)>n$.
Convo K es compacto, $\Rightarrow \exists$ una subsucasión ($P_{n k}$) tal que $P_{n k} \rightarrow l \in K$.

Proholado $f\left(P_{n k}\right)>n_{k} \Rightarrow f\left(P_{n_{k}}\right) \rightarrow+\infty \quad$ ABSURDO.

- ellabsurdo-prosiene de supones tro acotada superiormate. Luego de be ses to
- Comitriaudo fper-f se pruebaque festáa cotada inferionnente.

2. Sea $M=\sup _{X \in k} f(x) \quad M E$ por ses facotada superiomente ($\begin{gathered}A X 10 M A D D E \\ \text { CarpleTiTOD }\end{gathered}$)

Querenuos aver que $X_{2} \in K$ talque $f\left(x_{2}\right)=M$
Para lada $n \in \mathbb{N}, \exists P_{n} \in K$ talque $M-\frac{1}{n}<f\left(P_{n}\right) \leqslant M$.
Como k es compacto $\Rightarrow \exists$ umassubsucesión $\left(P_{n k}\right) / P_{n k} \rightarrow l \in k$
Cowo f es continua $f\left(P_{k}\right) \rightarrow f(l)$
$\left.\underset{\substack{M k \rightarrow \infty \\ n k}}{\substack{1}}<f\left(P_{n_{k}}\right) \leqslant M \Rightarrow f\left(P_{n_{k}}\right) \rightarrow \ell\right) \rightarrow M$; Sale que $f(l)=M$
Por unicidad del límite.
Ejeuplo: $f(x)=\frac{1}{x} ; f:(0,1]=\{x \in \mathbb{R} / 0<x \leqslant 1\} \rightarrow \mathbb{R}$ fra está a cotada tuperiorueute en $(0,1]$

$$
f(1 / n)=n \rightarrow \infty \quad 1 / n \in(0,1] .
$$

Conclusión: El teorema puede no valer si el dominio de fnoes cerrado. oto ejemplo: $f(x)=\frac{1}{x}, f:[1,+\infty)^{n}=\{x \in \mathbb{R} / x \geqslant 1\} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& f(n)=\frac{1}{n}, n \in[1,+\infty) \\
& m=\ln f f(x)=0, x \in[1,+\infty)
\end{aligned}
$$

tio exaste hinguín $X_{1} \in K$ donde $f\left(x_{1}\right)=m \Rightarrow$ no Hay Mínimo.
$(f(x)>0$ siempre).
Pona defimin la función en $[0,1]$ Jeugo que asignar un valor en 0 : $f:[0,1] \rightarrow \mathbb{R}$;
$f(x)=\left\{\begin{array}{l}1 / x \text { si } x \neq 0 \\ 8 \text { si } x=0\end{array} \Rightarrow f\right.$ no es contimua, $[0,1]$ es compacto.
si $f(1 / n)=n \Rightarrow f$ ho stá acotada superionmente.

Continuidad
obs: $f, g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$; sify g son continuias en $x_{0} \in \mathbb{R}^{d} \Longrightarrow$
$\Rightarrow f+g$ es conticuia en $x_{0} ;(f+g)(x)=f(x)+g(x)$
$\Rightarrow f-g$ es contimua eu x_{0}
$\Rightarrow f \circ g: \mathbb{R}^{d} \rightarrow \mathbb{R}_{\text {es }}$ contiuna en X_{0}
$\Rightarrow \frac{f}{g}$ escontivuna en X_{0} ヶf $g\left(x_{0}\right) \neq 0 \quad($ en $m=1)$
Composición de funciones:

$$
\text { P } f=\frac{B}{y}=f(x),{ }_{B}=g_{g(f(x))}^{B} g \circ f(x)=g(f(x))
$$

Def: Sif es contínua en x_{0} y g es continuea en $y_{0}=f\left(x_{0}\right)$, entonces gof es continua en $\$ x_{0}$.
Ejemplo:

$$
\begin{aligned}
& h(x)=\operatorname{sen}\left(x^{2}\right) \\
& h=g \circ f \\
& f(x)=x^{2} ; g(y)=\operatorname{sen} y \\
& g \circ f(x)=\operatorname{sen}\left(x^{2}\right) \Rightarrow y=x^{2}
\end{aligned}
$$

Derivadas en una variable.
$f: D \subseteq \mathbb{R} \rightarrow \mathbb{R}$, D un intervalo, $X_{0} \in D^{\circ}$ (X_{0} es unterier a D).

$$
\begin{aligned}
& \quad\left(\exists \delta>0:\left(x_{0} \cdots \delta, x_{0}+\delta\right) \subseteq D\right) \\
& \operatorname{tg}(\theta)=\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right): \text { hago } h \rightarrow 0 .}{h} f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\frac{d f}{d x}\left(x_{0}\right) \Rightarrow \text { Derivadade }
\end{aligned}
$$

Def: fse dice derivable eu x_{0} si exinse $f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$

$$
=\lim _{x \rightarrow 0} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}, x=x_{0}+h
$$

ng eate'tuímero se llanua la decivada de f en Xo.

Reglas de la derivada:

$$
\begin{array}{rlr}
\cdot(f+g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)+g^{\prime}\left(x_{0}\right) & (\cos x)= \\
\cdot(f-g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)-g^{\prime}\left(x_{0}\right) & \cdot(\operatorname{sen} x)^{\prime}= \\
\cdot(f \cdot g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) \cdot g\left(x_{0}\right)+f\left(x_{0}\right) \cdot g^{\prime}\left(x_{0}\right) . & \cdot(\log x)^{\prime}= \\
\cdot\left(\frac{f}{g}\right)^{\prime}\left(x_{0}\right) & =\left(f \cdot \frac{1}{g}\right)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) \cdot \frac{1}{g\left(x_{0}\right)}+f\left(x_{0}\right) \cdot\left(\frac{-g^{\prime}\left(x_{0}\right)}{g\left(x_{0}\right)}\right) \\
& =\frac{f\left(x_{0}\right)^{\prime} g\left(x_{0}\right)-f\left(x_{0}\right) \cdot g^{\prime}\left(x_{0}\right)}{g\left(x_{0}\right)^{2}}, \text { si } g\left(x_{0}\right) \neq 0 . \\
\cdot(g \circ f)^{\prime}\left(x_{0}\right) & =g^{\prime}\left(f\left(x_{0}\right)\right) \cdot f^{\prime}\left(x_{0}\right) .
\end{array}
$$

TEOREMA: (forma equivalende de la definición de decivada).

$$
f: D \subseteq \mathbb{R} \rightarrow \mathbb{R}, \quad x_{0} \in D^{\circ}
$$

f es derivable en x_{0} y $f^{\prime}\left(x_{0}\right)=\alpha \in \mathbb{R} \Leftrightarrow$ para xen un entormo $\left(x_{0}-\delta ; x_{0}+\delta\right) \subseteq D$

$$
f(x)=\frac{f\left(x_{0}\right)+\alpha\left(x-x_{0}\right)}{\text { La recta tangente }}+\frac{R(x)_{1}}{\text { resto eerror }} \text { donde } \lim _{x \rightarrow x_{0}} \frac{|R(x)|}{\left|x-x_{0}\right|}=0 \cdot\binom{\text { Desarro llode }}{\text { Taylor a oiden 1 }}
$$

Dem: \Rightarrow) Suponemas ques fes derivable en $x_{0} y f^{\prime}\left(x_{0}\right)=\alpha$
Definimios $R(x)=f(x)-\left[f\left(x_{0}\right)+\alpha\left(x-x_{0}\right)\right]$. Querenes verque $\lim _{x \rightarrow x_{0}} \frac{|R(x)|}{\left|x-x_{0}\right|}=0$.

$$
\begin{aligned}
& \frac{|R(x)|}{\left|x-x_{0}\right|}=\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-\alpha\right| \rightarrow 0 \text {, pues } \alpha=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=0 . \\
& \Leftrightarrow \operatorname{Si} f(x)=f\left(x_{0}\right)+\alpha\left(x-x_{0}\right)+R(x) \text { donde } \lim _{x \rightarrow x_{0}} \frac{|R(x)|}{\left|x-x_{0}\right|}=0 . \\
& f(x)-f\left(x_{0}\right)=\alpha\left(x-x_{0}\right)+R(x) \\
& \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\alpha+\frac{R(x)}{x-x_{0}} \operatorname{cuando}_{x \rightarrow x_{0}} \alpha=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
\end{aligned}
$$

osea, $f^{\prime}\left(x_{0}\right)=\alpha$
Efemplo: $f(x)=x^{2}$

$$
\begin{aligned}
& f(x)=x^{2}=\left(x_{0}+h\right)^{2}=x_{0}^{2}+2 x_{0} h+h^{2} \\
& h=x-x_{0}=f\left(x_{0}\right)+\alpha h+R(x) \\
& \frac{|R(x)|}{\left|x-x_{0}\right|}=\frac{|h|^{2}}{|h|}=|h| \rightarrow 0 \text { si } x \rightarrow x_{0}
\end{aligned}
$$

$\Rightarrow f_{\infty}$ dericrable en x_{0} y $f^{\prime}\left(x_{0}\right)=2 x_{0}$.

$$
R(x)=0(\mid x-x-1)
$$

Notación:
Def $\longrightarrow f(x)=O(g(x))$ (ogronde) $\underset{x \rightarrow x_{0}}{\text { Cuaudo }}$
$|f(x)| \leqslant O_{g}(x)$ para x an un entervo de x.
हf: $\operatorname{sen}(x)=O(1)$
$n^{2}+8 n+5=O\left(n^{2}\right)$ cuaudo $n \rightarrow \infty$
Def \longrightarrow - $f(x)=o(g(x))($ o pequeña): fes de uu orden tuás peque cõo que g. cuaudo $x \rightarrow x_{0}$.

$$
\Leftrightarrow \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=0
$$

g.: $\lim _{x \rightarrow 0} \frac{\operatorname{sen}\left(x^{2}\right)}{x^{3}}=0 ; \operatorname{sen}\left(x^{4}\right)=O\left(x^{4}\right)$

$$
\left(x_{0}+h\right)^{2}=x_{0}^{2}+2 h x_{0}+d(h)
$$

Paretwer eu anento:

$$
\begin{aligned}
& \frac{|\operatorname{sen} x| \leqslant|x|}{\sin |x|<\pi / 2} \\
& |x| \leqslant|\operatorname{tg} x| \\
& \Rightarrow x \leqslant \frac{\operatorname{sen} x}{\cos x} \Rightarrow \cos x \leqslant \frac{\operatorname{sen} x}{x} \\
& \cos x \leqslant \frac{\operatorname{sen} x}{x} \leqslant 1 \quad \text { si } 0<x<\pi / 2 \\
& \lim _{x \rightarrow 0^{+}} \frac{\operatorname{sen} x}{x}=1 \quad ; \quad \frac{\operatorname{sen}(-x)}{(-x)}=\frac{\operatorname{sen}(x)}{x}
\end{aligned}
$$

Obs: sif es derivableen $x_{0} \Rightarrow f$ es continuea on x_{0}

$$
\begin{aligned}
& \text { Li } f \text { es derivable eux } x_{0} \Rightarrow f(x)=\underset{\rightarrow f\left(x_{0}\right)}{f\left(x_{0}\right)} \underset{\rightarrow 0}{\alpha\left(x-x_{0}\right)}+\underset{\rightarrow 0}{R(x)} \text { donde } \alpha=f^{\prime}\left(x_{0}\right) \\
& \text { y } \lim _{x \rightarrow x_{0}} \frac{|R(x)|}{\left|x-x_{0}\right|}=0 \text {. }
\end{aligned}
$$

Gando $x \rightarrow x_{0}, \lim _{x \rightarrow x_{0}} R(x)=0 \quad R(x)=\underbrace{\frac{R(x)}{\left|x-x_{0}\right|}}_{\rightarrow 0} \cdot \underbrace{\left|x-x_{0}\right|}_{\rightarrow 0}$ enands $x \rightarrow x_{0}$.
\Rightarrow Cuando $f(x) \rightarrow f\left(x_{0}\right)$
luego f es continua en X_{0}

Obs: Existeu funciores contimuas gue NO SON DERIVABLES.
घ : $f(x)=|x|$
hoes derivable en $x_{0}=0$

$$
\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\frac{|h|}{h}=\left\{\begin{array}{l}
1 \\
1 \text { si } h>0 \\
-1 \text { si } h<0
\end{array}\right.
$$

Def: $f: D \subseteq \mathbb{R} \rightarrow \mathbb{R}, x_{0} \in D$.

- Xo esum máximo local si $\exists \delta>0 / f\left(x_{0}\right) \geqslant f(x) \forall x \in D$ talque $\left|x-x_{0}\right|<\delta$
- Xo es un minimo local si $\exists \delta>0 / f\left(x_{0}\right) \leqslant f(x) \forall x \in D$ talque $\left|x-x_{0}\right|<\delta$. (aubos sellamou exhermos locales)

TEOREMA DE FERMAT:
Si $x_{0} \in D^{\circ}$ (en el cuteriorde D) es un extumis local de $f \Rightarrow f^{\prime}\left(x_{0}\right)=0$.
Dem: Por efeuplo si X_{0} es un auinimuo local

$$
\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\left\{\begin{array} { l }
{ \geqslant 0 \text { si } x > x _ { 0 } } \\
{ \leq 0 \text { si } x < x _ { 0 } }
\end{array} \Rightarrow \quad \underset { x \rightarrow x _ { 0 } } { \text { auords } } \left\{\begin{array}{l}
f^{\prime}\left(x_{0}\right) \geqslant 0 \\
f^{\prime}\left(x_{0}\right) \leq 0
\end{array} \Rightarrow f^{\prime}\left(x_{0}\right)=0\right.\right.
$$

Si x_{0} es màximir local: amaloganeute.

$$
=\left\{\left.\begin{array}{l}
\leq 0 \text { si } x>x_{0} \\
\geq 0 \\
\text { si } x<x_{0}
\end{array} \right\rvert\, \Longrightarrow f^{\prime}\left(x_{0}\right)=0\right.
$$

Obs: El teonema ho funciona si $X_{0} \in \partial D$
$\begin{array}{ll}\varepsilon_{f}: f: D \rightarrow \mathbb{R} & f(x)=x^{2} \\ D=[0,1] & f^{\prime}(x)=2 x\end{array}$
TEOREMA DE ROLLE. Suponemus $f:[a, b] \rightarrow \mathbb{R}$, f contincor en $[a, b]$ y derivable en (a, b) if $f(a)=f(b)$. Entonces $\exists x_{0} \in(a, b) / f^{\prime}\left(x_{0}\right)=0$.
 endos puntos X_{m}, X_{M} de $[a, b]$ par el terema de Weiershass (clase pasada) Li alguno de ellos está en $(a, b) \Rightarrow f^{\prime}\left(x_{m}\right)=0 \quad$ of $f^{\prime}\left(x_{m}\right)=0$, Por el Leorema de fermat.

$$
\begin{aligned}
& \operatorname{Si}\left(x_{m}=a \wedge x_{m}=b\right) \vee\left(x_{m}=b \wedge x_{m}=a\right) \Rightarrow f \text { es constoute }(\text { pues } f(a)=\varnothing(b)) \\
& \Rightarrow f^{\prime}\left(x_{0}\right)=0 \quad \forall x_{0} \in(a, b) \text {. }
\end{aligned}
$$

Ejemplo: $f(x)=x^{2}, \quad f:[-1,1] \rightarrow \mathbb{R} ; \quad a=-1, \quad b=1$

$$
f(1)=f(-1)=1
$$

Eu este laso $X_{m}=X_{M}=0$.

Teorema de Lagrange, o teorema del va lor medis del cálculo diferencial:
Supongauos que $f:[a, b] \rightarrow \mathbb{R},(a \neq b) ;$ fors f es continua as $[a, b]$ y derivable en (a, b).
Entonces, $\exists x_{0} \in(a, b) / \frac{f(b)-f(a)}{b-a}=f^{\prime}\left(x_{0}\right)$

(Existe algúu puuts donde la recta taugeutes paralela a la secoute)
Dem: Sea: $\Delta=\frac{f(b)-f(a)}{b-a} \in \mathbb{R}$
Defino $\phi(x)=f(x)-[f(a)+\Delta(x-a)], \phi:[a, b] \rightarrow \mathbb{R}$.
I le aplico el teorema de Rolle. $\quad \phi(a)=f(a)-f(a)=0$.

$$
\phi(b)=f(b)-[f(a)+\Delta(b-a)]=f(b)-[f(a)+f(b)-f(a)]=0
$$

luggo exinte $x_{0} \in(a, b)$ tal que $\phi^{\prime}\left(x_{0}\right)=0$

$$
\phi(x)=f^{\prime}(x)-\Delta . \quad \Rightarrow f^{\prime}\left(x_{0}\right)=\Delta
$$

Eempls: $f(x)=x^{3}+x-8, \quad f(0)=-8<0 ; f(2)=2>0$.
fes continuea en $[0,2] \Rightarrow$ por el terenua de Bolzano exiote algín $x_{0} \in(0,2) / f\left(x_{0}\right)=0$ $f^{\prime}(x)=3 x^{2}+1 \geqslant 1$, el x_{0} ES único.
(si exptieran $x_{0} y \tilde{x}_{0}, x_{0} \neq \tilde{x}_{0}, x_{0}, \tilde{x} \in(0,2)$ talesque $f\left(x_{0}\right)=f\left(\tilde{x}_{0}\right)=0$ por el ferene de Rolle $\Rightarrow \exists X_{1} \in\left(x_{0}, \tilde{x}_{0}\right)$ donde $f^{\prime}\left(x_{1}\right)=0$, ABSURDS.
luegu, x_{0} es úvico
Obs: $\mathcal{L i}\left|f^{\prime}(x)\right| \leq M \forall x \in(a, b)$, entanas el teorema de Lagrange me da una derigualdad $\left|\frac{f(b)-f(a)}{b-a}\right| \leq M$ a sea $|f(b)-f(a)| \leq M(b-a)$ (Condición de)
छg: $f(x)=\operatorname{sen} x, f^{\prime}(x)=\cos x,|\cos x| \leqslant 1 \forall x \quad(M=1)$
$|\operatorname{sen}(b)-\operatorname{sen}(a)| \leqslant 1 \cdot|b-a| \quad \forall a, b \in \mathbb{R}$.
Sitoms $a=0:|\operatorname{sen}(b)| \leqslant|b|$. Ejercicio:
dbs: $\mathcal{S i}^{\prime}(x)>0, \forall x \in(a, b) \rightarrow f(a)<f(b)$

$$
\text { si } f^{\prime}\left(x_{0}\right)<0 \forall x \in(a, b) \Rightarrow f(x)>f(b)
$$

TEOREMA DE CAUCHY. bJa, sean $f, g:[a, b] \rightarrow \mathbb{R}$ contimuas en $[a, b]$ ig $g(a) \neq g(b)$. Entonces $\exists x_{0} \in(a, b)$ tal que:

$$
\left\{\begin{array}{l}
1-\operatorname{si} g^{\prime}\left(x_{0}\right) \neq 0 \Rightarrow \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)} \\
2-\operatorname{si} g^{\prime}\left(x_{0}\right)=0 \Longrightarrow f^{\prime}\left(x_{0}\right)=0
\end{array}\right.
$$

obs: Si $g(x)=x$ se seduce al seremair de Lagange.
$\operatorname{Dem}: \frac{\text { sea }}{\Delta}=\frac{f(b)-f(a)}{g(b)-g(a)}$. Sea $\phi(x)=f(x)-\Delta \cdot g(x)$ continua en $[a, b]$. derriva ble en (a,b)
Quereines verque $\phi(a)=\phi(b) \Longleftrightarrow f(a)-\Delta \cdot g(a)=f(b)-\Delta g(b)$

$$
\Longleftrightarrow f(a)-f(b)=\Delta(g(a)-g(b))
$$

$\Leftrightarrow \Delta$ es el que formamos.
Priel Jeronva de Rolle $\exists x_{0} \in(a, b) / \phi^{\prime}\left(x_{0}\right)=0$.

$$
\begin{aligned}
& \phi^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)-\Delta \cdot g^{\prime}\left(x_{0}\right) \Rightarrow f^{\prime}\left(x_{0}\right)=\Delta \cdot g^{\prime}\left(x_{0}\right) \\
& \left\{\begin{array}{l}
1 \operatorname{sig} g^{\prime}\left(x_{0}\right) \neq 0 \Rightarrow \Delta=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)} \\
2-\operatorname{sig} g^{\prime}\left(x_{0}\right)=0 \Rightarrow f^{\prime}\left(x_{0}\right)=0
\end{array}\right.
\end{aligned}
$$

REGLA DE L'Hopital: $f_{1} g:\left(x_{0}-\delta, x_{0}+\delta\right) \rightarrow \mathbb{R}$ derinables.

$$
f\left(x_{0}\right)=g\left(x_{0}\right)=0, \lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=l
$$

y supongamos que $g^{\prime}(x) \neq 0$ si $0<\left|x-x_{0}\right|<\delta$ entonces $\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=l$.
Dem: $\frac{f(x)}{g(x)}=\frac{f(x)-f\left(x_{0}\right)}{g(x)-g\left(x_{0}\right)}=\frac{f^{\prime}(z)}{g^{\prime}(z)} \rightarrow \ell$ (evandv $x \rightarrow x_{0} \neq \underset{\left.z(x) \longrightarrow x_{0}\right)}{ }$
teorema de Cauchy, donde $z=z(x) \in\left(x, x_{0}\right)$.

$$
\begin{aligned}
& \lim _{\Delta t \rightarrow 0} \frac{x\left(t_{0}+\Delta t\right)-x\left(t_{0}\right)}{\Delta t}=x^{\prime}\left(t_{0}\right) \\
& \lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{\partial t}\left(t_{0}\right)
\end{aligned}
$$

$X: \mathbb{R} \rightarrow \mathbb{R}^{3}$

Clase pasadal derivabilidas. en unauariable.
Def: $f: \mathbb{R} \rightarrow \mathbb{R} ; f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f\left(x_{0}\right)-f(x)}{x-x_{0}}$

$$
\begin{aligned}
& y=f\left(x_{0}\right)+\alpha\left(x-x_{0}\right) \\
& \alpha=f^{\prime}\left(x_{0}\right) \\
& f(x)=f\left(x_{0}\right)+\alpha\left(x-x_{0}\right)+R(x)
\end{aligned}
$$

f es derivable en x_{0} y $\alpha=f^{\prime}\left(x_{0}\right) \Longleftrightarrow \lim _{x \rightarrow x_{0}} \frac{|R(x)|}{\left|x-x_{0}\right|}=0$
Derivabilidad en dos variables - funciones diferenciables|
Def: $\left.f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R} ; \operatorname{graf}(f)=\left\{(x, y, z) \in \mathbb{R}^{3} / z=f(x, y) ;(x, y) \in D\right\} ; p \in \mathbb{R}^{2}, p=(x, y,)_{0}\right)$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(P)=f_{x}(P)=D_{x} f(P)=\left.\left.\frac{d}{d x}\right|_{x-x_{0}}\right|_{\left(x, y_{0}\right)}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right) \Rightarrow \text { Deciveda percial def }}{\Delta x} \text { respecto de x en } P . \\
& \frac{\partial f}{\partial y}(P)=f_{y}(P)=D_{y} f(P)=\left.\frac{d}{d y}\right|_{y=y_{0}} ^{f\left(x_{0}, y\right)}=\lim _{\Delta y \rightarrow 0} \frac{f\left(x_{0}, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)}{\Delta y} \Rightarrow \text { Decivada parcial de } f \\
& \text { respecto a y en } P .
\end{aligned}
$$

Ejemplo: $f(x, y)=x y^{2} ; \quad P=(2,3)$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(P)=\left.\frac{d}{d x}\right|_{x=2} ^{f(x, 3)}=\left.\frac{d}{d x}\right|_{x=2} ^{(9 x)}=9 . \\
& \frac{\partial f}{\partial y}(p)=\left.\frac{d}{d y}\right|_{y=3} ^{f(2, y)}=\left.\frac{d}{d y}\right|_{y=3} ^{2 y^{2}}=\left.4 y\right|_{y=3}=12 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ejemplo: } f(x, y)=\left\{\begin{array}{ll}
0 & \text { si } x=0 \vee y=0 \quad \text { interpretación } \\
\frac{1}{x y} & \text { si } x \neq 0 \wedge y \neq 0 .
\end{array} \quad p_{1}=(0,0)\right.
\end{aligned}
$$

$$
\frac{\partial f}{\partial x}(0,0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x, 0)-f(0,0)}{\Delta x}=0
$$

$\frac{\partial f}{\partial v}(90) \quad \frac{\partial f}{\partial y}(0,0)=0$ exintesolosi \quad fino es continua. $v=l_{4} a v=l_{2}$.
hi siquiero es acotada en un eutono del $(0,0)$ $\underset{\text { (ver póg. Signiente). }}{\#} \quad f\left(\frac{1}{n}, \frac{1}{n}\right)=n^{2} \longrightarrow+\infty$ si $n \rightarrow+\infty$

Def: $f: \mathbb{R}^{d} \rightarrow \mathbb{R}, f(x)=f\left(x_{1}, x_{2}, \ldots, x_{d}\right) ; x=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$.
Tomo $v \in \mathbb{R}^{d}(\operatorname{con}\|v\|=1)$ y $P \in \mathbb{R}^{d}$

En panticulan, $l j=(0,0, \cdots, 0,1,0, \cdots, 0)$
$\left\{l_{1}, \ell_{2}, \ldots, \ell_{d}\right\}$ es la bose canónica de \mathbb{R}^{d}.
son "enos' $E^{\prime \prime} \quad X=x_{1} l_{1}+x_{2} l_{2}+\cdots+x_{d} l_{d}$.

$$
\text { Entonces: } \frac{\partial f}{\partial l_{j}}(P)=\frac{\partial f}{\partial x_{j}}(P)
$$

Ejemplo: $f(x, y)=x y^{2}, p=(2,3)$

$$
\begin{aligned}
& f(P)=2 \cdot 3^{2}=18 \\
& \frac{\partial f}{\partial v}(P)=\left.\frac{d}{d \lambda}\right|_{\lambda=0} ^{f}(P+\lambda v)=\left.\frac{d}{d \lambda}\right|_{\lambda=0} ^{f}\left(2+\lambda v_{1}, 3+\lambda v_{2}\right)=\left.\frac{d}{d \lambda}\right|_{\lambda=0}\left(2+\lambda v_{1}\right)\left(3+\lambda v_{2}\right)^{2}= \\
& =\left.\frac{d}{d \lambda}\right|_{\lambda=0}\left(2+\lambda v_{1}\right)\left(9+6 \lambda v_{2}+\lambda^{2} v_{2}^{2}\right)=\left.\frac{d}{d \lambda}\right|_{\lambda=0} ^{\left(18+9 \lambda v_{1}+12 \lambda v_{2}+6 \lambda^{2} v_{1} v_{2}+2 \lambda^{2} v_{2}^{2}+\lambda^{3} v_{1} v_{2}^{2}\right)} \\
& =9 v_{1}+12 v_{2} \quad \Rightarrow \frac{d f}{d x}(P)=9 \quad ; \frac{\partial f}{\partial y}(P)=12 .
\end{aligned}
$$

$f(x, y) ; p=\left(x_{0}, y_{0}\right):$

obs: tods los plans que pasau por el punto $\left(x_{0}, y_{0}, z_{0}\right)$ con $z_{0}=f\left(x_{0}, y_{0}\right)$:

$$
z=z_{0}+\alpha\left(x-x_{0}\right)+\beta\left(y-y_{0}\right) \quad, \quad \alpha, \beta \in \mathbb{R} .
$$

Def: Un plana de esta forma es el plano tangente algráfico de feu el pundo P sipara (x, y) en un entormo de $P: f(x, y)=f(p)+\alpha\left(x-x_{0}\right)+\beta\left(y-y_{0}\right)+\mathbb{R}(x, y)$
Conla condición deque $\lim _{(x, y) \rightarrow p} \frac{R(x, y)}{\|(x, y)-p\|}=0$.
tiexiste un plano taugente (eneste sentido) decianos que f es difecenciable en P.
Seguimos eon el Nuionu ejemplo: $f(x, y)=x y^{2} ; \quad P=(2,3) ;(x, y)=(2+h, 3+k)$

$$
\begin{aligned}
f(x, y)=(2+h)(3+k)^{2}=(2+h)\left(9+6 k+k^{2}\right) & =\frac{18}{f(2,3)}+\frac{9(x-2)}{9}+\frac{12 k}{1} k+\frac{6 k h+2 k^{2}+h k^{2}}{R(h, k)} \\
& =f(2,3)+9(x-2)+12(y-3)+R(h, k)
\end{aligned}
$$

Querenor ver que $\lim _{(x, y) \rightarrow(2,3)} \frac{|R(x ; y)|}{\|(x ; y)-(2,3)\|}=0$.

$$
\lim _{(x, 4) \rightarrow(2,3)} \frac{\left|6 i e n+2 k^{2}+h k^{2}\right|}{\|(h, k)\|}
$$

$$
-\left|2 k^{2}+h k^{2}+6 h k\right|\left\{2|k|^{\text {TR }}+|h||k|^{2}+6\left|h\|k \mid \leqslant 2\|(h, k)\left\|^{2}+\right\| h, k\right)\left\|^{3}+6\right\|(h, k) \|^{2}\right.
$$

Dado $\varepsilon>0$, eleginuos $\delta<\min \left(1, \frac{\varepsilon}{9}\right)$

$$
\frac{\left|2 k^{2}+h k^{2}+c h k\right|}{\|(h, k)\|} \leqslant 2\|(h, k)\|+\|(h, k)\|^{2}+6\|(h, k)\| \leqslant 2 \delta+\delta^{2}+6 \delta=8 \delta+\delta^{2} .
$$

si $d>\|(x, y)\|$
como $\delta<1 \leqslant 9 \delta<\varepsilon$ pues $\delta<\frac{\varepsilon}{9}$
El limuite doble es cerv $\Rightarrow f$ es difecenciable an $(2,3)^{\prime}$ 'y el plano taugeute al grático de fen el $(2,3,18)$ es:
$z=18+9(x-2)+12(y-3)$.
Notar que $\frac{\partial f}{\partial x}(P)=9 ; \frac{\partial f}{\partial y}(P)=12$.
TEOREMR Sea $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, p \in \mathbb{R}^{2}$. Supongamos que f es diferenciableup Eutoricen $\frac{\partial f}{\partial x}(P), \frac{\partial f}{\partial y}(P)$ exioten y $\frac{\partial f}{\partial x}(P)=\alpha, \frac{\partial f}{\partial y}(P)=\beta$ Màs aún, dado eualquier arector v con $\|v\|=1$:

$$
\frac{\partial f}{\partial v}(P)=\alpha v_{1}+\beta v_{2} \circledast=\langle\nabla f(P), v\rangle
$$

Dem: Bada proban * En la definición de función difecenciable tomamos $\left(x_{1} y\right)=p+\lambda v=\left(x_{0}+\lambda v_{1}, y_{0}+\lambda v_{2}\right) ; \frac{\partial f(p)}{\partial v}=\lim _{\lambda \rightarrow 0} \frac{f(p+\lambda v)-f(p)}{\lambda}$

$$
\begin{aligned}
& f(p+\lambda v)=f(p)+\alpha\left(x_{0}+\lambda v_{1}-x_{0}\right)+\beta\left(y_{0}+\lambda v_{2}-y_{0}\right)+R(x, y) \\
& =f(p)+\alpha \lambda v_{1}+\beta \lambda v_{2}+R(x, y) \\
& \frac{f(p+\lambda v)-f(p)}{\lambda}=\alpha v_{1}+\beta v_{2}+\frac{R(x, y)}{\lambda}
\end{aligned}
$$

(*) es equidodente a decin que $\frac{R(x, y)}{\lambda} \longrightarrow 0$.

$$
\begin{aligned}
& \|(x, y)-P\|=\left\|\left(x_{0}+\lambda v_{1}, y_{0}+\lambda v_{2}\right)-\left(x, y_{0}\right)\right\|=\left\|\left(\lambda v_{1}, \lambda v_{2}\right)\right\|=|\lambda| \cdot\left\|\left(v_{1}, v_{2}\right)\right\|=|\lambda| \\
& \frac{|R(x, y)|}{\frac{\|(x, y)-P\|}{\downarrow}}=\left\lvert\, \frac{R(x, y) \mid \text { ahora }(x(\lambda), y(\lambda)) \rightarrow P \text { cuaudo } \lambda \rightarrow 0 .}{\lambda}\right. \text { a audo } \\
& (x, y) \rightarrow P
\end{aligned}
$$

por la definición
de función \quad Por $\quad \frac{\partial f}{\partial v}(P)=\alpha v_{1}+\beta v_{2}$.
no tengo idea de dónde mierda salió este doble asterisco.

Def: Elvector grediente def en $P: \nabla f(P)=\left(\frac{\partial f}{\partial x}(P) ; \frac{\partial f}{\partial y}(P)\right)$
Lifas diferenciable en $P: \frac{\partial f}{\partial v}=\langle\nabla f(P), v\rangle=\|\nabla f\| \cdot\|v\| \cos \theta$
$\frac{d f}{d v}(P)$ es máxima $\operatorname{si} \cos \theta=1$

$$
\Leftrightarrow \quad \theta=0
$$

$\Leftrightarrow v$ es paralelo al $\nabla f(P)$
El gradiente me da la disección de MÁxMo crecimiento.
Def: $L(v)=\alpha v_{1}+\beta v_{2} ; L: \mathbb{R}^{2} \rightarrow \mathbb{R}$
Se llama la difecencial de fen P y se nota $D f(P)$
$[L]=[\alpha \beta]$ La muatiz de L en la base comónica.
Ejecupls: $f(x, y)=\sqrt{2-x^{2}-y^{2}} ; f: D \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$

$$
D=\left\{(x, y) \in \mathbb{R}^{2} / 2-x^{2}-y^{2} \geqslant 0\right\}=\left\{(x, y) \in \mathbb{R}^{2} /\|(x, y)\| \leqslant \sqrt{2}\right\}=\bar{B}((0,0), \sqrt{2})
$$

$\operatorname{graf}(f)=\left\{(x, y, z) \in \mathbb{R}^{3} / z=\sqrt{2-x^{2}-y^{2}},(x, y) \in D\right\}$ Come gréfica de uns función

$$
g: \mathbb{R}^{3} \rightarrow \mathbb{R} / \quad g(x, y, z)=x^{2}+y^{2}+z^{2} \quad \text { (Comio superficie implícita) }
$$

Gemplo: $P=(0,0) \in D ; \quad f(p)=\sqrt{2} ; \quad(0,0, \sqrt{2}) \in S$.
¿Cóno es la encución del plano tanjente a S en p ?

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(x, y)=\frac{1}{2 \sqrt{2-x^{2}-y^{2}}} \cdot-2 x=\frac{-x}{\sqrt{2-x^{2}-y^{2}}} \quad \begin{array}{l}
\text { Tomands } \\
\Omega=D^{0}
\end{array} \\
& \frac{\partial f}{\partial y}(x, y)=\frac{-y}{\sqrt{2-x^{2}-y^{2}}} \quad \text { si }(x, y) \in D^{0}=\{(x, y) /\|(x, y)\|<\sqrt{2}\}
\end{aligned}
$$

Vames a ver que fes diferenciable en D° (en cacla purto de D°).
Por el saiguieutiteorena
El caudidato a ser el plano tangenties.

$$
\begin{aligned}
& \alpha=\frac{\partial f}{\partial x}(0,0)=0 ; \quad \beta=\frac{\partial f}{\partial y}(0,0)=0 ; \quad ; \quad q=(P, f(P))=(0,0, \sqrt{2}) \\
& z=\frac{f(P)}{\sqrt{2}}+0(x-0)+0(y-0)
\end{aligned}
$$

$z=\sqrt{2}$ es el plamo tangeute a 5 en q.
obs: $z=z_{0}+\alpha\left(x-x_{0}\right)+\beta\left(y-y_{0}\right) \quad \Rightarrow$ Ecuación explícida del plamo (comográfico). $\left.\begin{array}{l}\alpha\left(x-x_{0}\right)+\beta\left(y-y_{0}\right)+(-1)\left(z-z_{0}\right)=0 . \\ \left\langle\left(x-x_{0}, y-y_{0}, z-z_{0}\right) ;\left(\alpha_{1},-1\right)\right\rangle=0\end{array}\right\}(\alpha, \beta,-1)$ es nornal al plano.

Def: Seo $\Omega \subseteq \mathbb{R}^{d}$ un lonfunto abierto $f: \Omega \rightarrow \mathbb{R}$ es de clos C^{1} en Ω sitodas sus dericrodas parciales $\frac{\partial f(p)}{\partial x_{j}}(P)$ exiosen $\forall p$ ento $p \in \Omega(1 \leq j \leqslant d)$ of $\frac{\partial f}{\partial X_{j}}: \Omega \rightarrow \mathbb{R}$ es contiruma en Ω.
TEORETA: Supongana que $\Omega \subseteq \mathbb{R}^{2}$ es unabierto y $f: \Omega \rightarrow \mathbb{R}^{2}$ esdeclase C^{1} Entornces $\forall p \in \Omega$, f esciferenciable en P.

Funciones diferenciables
Def: Sea $f: D \subseteq \mathbb{R}^{d} \rightarrow \mathbb{R}_{i} p \in D^{0}$ (enel cuteriorde $\left.D\right), P \notin\left(p_{1}, p_{2}, \ldots, p_{d}\right) ; x=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$

$$
\frac{\partial f}{\partial x_{j}}(P)=\lim _{\lambda \rightarrow 0} \frac{f\left(P+\lambda e_{j}\right)-f(P)}{\lambda} ; \quad e_{j}=\left(0,0, \cdots, 1_{e_{j}}\right) ; 1 \leqslant j \leqslant d
$$

Siexisten todas: $\nabla f(P)=\left(\frac{\partial f}{\partial x_{1}}(P), \frac{\partial f(P)}{\partial x_{2}}, \cdots, \frac{\partial f}{\partial x_{d}}(P)\right) \in \mathbb{R}^{d} \Rightarrow$ Elgradiente de fen P
Def: fes diferenciable en $p \in D^{\circ}$ si (pasoxen un entorno de p)

$$
\begin{aligned}
& f(x)=f(P)+\langle\nabla f(P), x-p\rangle+R(x) \\
&=f(P)+\sum_{j=1}^{d} \frac{\partial f}{\partial x_{j}}(P)=\left(x_{j}-P_{j}\right)+R(x) ; \text { donde } \lim _{x \rightarrow p} \frac{|R(x)|}{\|x-p\|}=0 . \\
& \lim _{x \rightarrow p} \frac{\mid f(x)-[f(p)+\langle\nabla f(P), x-p\rangle \mid}{\|x-P\|}=0
\end{aligned}
$$

Def: f es de clase C^{1} eu un abiento $\Omega \in \mathbb{R}^{d}$ si $\frac{\partial f}{\partial x_{j}}$ existen y son continvas en Ω para todoj con $1 \leqslant j \leqslant d$.
TEOREM 圈 I $\Omega \subseteq \mathbb{R}^{d}$ es abierto of $f: \Omega \rightarrow \mathbb{R}$ es c^{1} en $\Omega \Rightarrow \underline{f \text { es difereaciable }}$ en cada punto de Ω
Ejemplo:

$$
f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cc}
\frac{x_{1}^{2} x_{2}^{2}}{x_{1}^{2}+x_{2}^{2}} & \text { si }\left(x_{1}, x_{2}\right) \neq(0,0) \\
0 & \text { si }\left(x_{1}, x_{2}\right)=(0,0)
\end{array} \quad \text { if: } \mathbb{R}^{2} \rightarrow \mathbb{R} \quad(d=2) \quad \text { ¿Es diferenciableen } \mathbb{R}^{2} ?\right.
$$

Obsernamos $\Omega=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} /\left(x_{1}, x_{2}\right) \neq(0,0)\right\}$. es un abiento yf es C^{1} en Ω (esun cociente de polinomios don de el denomimador no se amula en Ω) \Rightarrow fesdiferenciable en P para todo $P \in \mathbb{R} ; P \neq(0,0)$ ¿ ¿Qú pasa si $P=(0,0)$?

$$
\begin{aligned}
& \left.\begin{array}{rl}
\partial b_{s}: & f\left(x_{1}, 0\right)=0 \\
f\left(0, x_{2}\right) & \forall x_{1} \\
f x_{2}
\end{array}\right\} \Rightarrow \frac{\partial f}{\partial x_{1}}(0, \phi)=0 \quad ; \quad \frac{\partial f}{\partial x_{2}}(0,0)=0 . \\
& \frac{\text { L } R(x)}{\|x-(q)\|}=\frac{f(x)-f(0,0)-\langle\nabla f(0,0), x-p\rangle}{\|x\|}=\frac{f(x)}{\|x\|} \text { (pana est } f \text {). } \\
& |f(x)|=\left|\frac{x_{1}^{2} x_{2}^{2}}{x_{1}^{2}+x_{2}^{2}}\right|=\frac{\left.\left|x_{1} \|^{2} \cdot\right| x_{2}\right|^{2}}{\|x\|^{2}} \leqslant \frac{\|x\|^{4}}{\|x\|^{2}}=\|x\|^{2} \quad \quad\left|x_{1}\right| \leqslant\|x\| ; \quad\left|x_{2}\right| \leqslant\|x\| \\
& \frac{\| f(x) \mid}{\|x\|}=\|x\|<\varepsilon \text { si }\|x\|<\varepsilon \quad(\tan \omega-\delta=\varepsilon) \Rightarrow \lim _{x \rightarrow(0,0)} \frac{|R(x)|}{\|x-(0,0)\|}=0 \text {. }
\end{aligned}
$$

\Rightarrow fes diferenciable en $(0,0)$ - hay un plano taugute y es horizoutal, pues $\nabla f(0,0)=0$委(encur punto oritics def)

TEOREMA
Otro Ejemplo:

$$
g\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cc}
\frac{x_{1} x_{2}^{2}}{x_{1}^{2}+x_{2}^{2}} & \text { si }\left(x_{1}, x_{2}\right) \neq(0,0) \\
0 & \text { si }\left(x_{1}, x_{2}\right)=(0,0)
\end{array}\right.
$$

ges C^{1} en el Aninuo Ω de arndeo \Rightarrow ges diferenciabbe en $P \forall P \in \mathbb{R}^{2}, P \neq(0,0)$
¿Qué pasa en $P=(0,0)$?
gtambién se omula sobhe los ejes $\Rightarrow \nabla g(0,0)=(0,0)$.

$$
\begin{aligned}
& \frac{|R(x)|}{\|x-(0,0)\|}=\frac{\frac{x_{1} x_{2}^{2}}{x_{2}^{2}+x_{2}^{2}}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}=\frac{x_{1} x_{2}^{2}}{\left(x_{1}^{2}+x_{2}^{2}\right)^{3 / 2}} \nrightarrow 0 \text { cuando }\left(x_{1}, x_{2}\right) \rightarrow(0,0) . \\
& x_{1} \mid x_{1}=x_{2} \text { si } x_{1}=x_{2} \neq 0 \frac{x_{1}^{3}}{\left(2 x_{1}^{2}\right)^{3 / 2}}=\frac{x^{3}}{2^{3 / 2} x_{1}^{3}}=\frac{1}{2^{3 / 2}} \nrightarrow 0
\end{aligned}
$$

$\Rightarrow f$ mo es diferenciable en $P=(0,0)$
Dem* Cuca de $P f(x)=f(p)+\langle\nabla f(p), x-p\rangle+R(x)$. Querenns orerque $f(x) \rightarrow f(p)$ Cuands $x \rightarrow p$

$$
|\langle\nabla f(p), x-p\rangle| \leqslant\|\nabla f(p)\| \cdot\|x-p\| \Rightarrow\langle\nabla f(p) ; x-p\rangle \rightarrow 0 \text { cuaudo } x \rightarrow p \text {. }
$$

cachy-schwar3
$f(x)=\frac{R(x)}{\frac{R x-P \|}{x} \frac{\|x-P\|}{\rightarrow 0} \rightarrow 0 \text { en la definición. }}$
liege, Mirando *enosque $f(x) \rightarrow f(P)$ cuando $x \rightarrow p$.
Dem

$$
\begin{aligned}
& h=\left(h_{1}, h_{2}\right) ; h=x-p \\
& q=\left(x_{1}, p_{2}\right)
\end{aligned}
$$

Pestáfifo x se nueve.

$$
\begin{aligned}
f(x)-f(p) & =[f(x)-f(q)]+[f(q)-f(p)]=\left[f\left(x_{1}, x_{2}\right)-f\left(x_{1}, p_{2}\right)\right]+\left[f\left(x_{1}, p_{2}\right)-f\left(p_{1}, p_{2}\right)\right]= \\
& =\left(G\left(x_{2}\right)-G\left(p_{2}\right)\right)+H\left(x_{1}\right)-H\left(p_{1}\right)
\end{aligned}
$$

Iuventaner 2 fuciences auxiliones de una cvoniable:

$$
\begin{aligned}
& G(t)=f\left(x_{1}, t\right), \quad G:\left[x_{2}, p_{2}\right] \rightarrow \mathbb{R} \\
& H(t)=f\left(t, p_{2}\right) ; H:\left[x_{1}, p_{1}\right] \rightarrow \mathbb{R}
\end{aligned}
$$

Por el teroma del analos medis (oteor de lagrange):

$$
\begin{array}{ll}
f(x)-f(p)=\left(x_{2}-P_{2}\right) \cdot G\left(c_{1}\right)+\left(x_{1}-P_{1}\right) \cdot H^{\prime}\left(c_{2}\right)=\left(x_{2}-P_{2}\right) \cdot \frac{\partial f}{\partial x_{2}}\left(x_{1}, c_{1}\right)+\left(x_{1}-P_{1}\right) \cdot \frac{\partial f}{\partial x_{1}}\left(c_{2}, P_{2}\right) & c_{1} \in\left(P_{2}, x_{2}\right) \\
\left\langle\nabla f(P)=\left(P_{1}, x_{1}\right) .\right.
\end{array}
$$

$$
\begin{aligned}
& \frac{|R(x)|}{\|x-p\|}=\frac{|f(x)-f(p)-\langle\nabla f(p), x-p\rangle| .}{\|x-p\|}
\end{aligned}
$$

$\frac{\partial f}{\partial x_{1}}$ y $\frac{\partial f}{\partial x_{2}}$ san continuaseup (puesf es $C^{1} \ln \Omega$ por hipótesin)

$$
\frac{\partial f}{\partial x_{1}}\left(c_{2}, p_{2}\right) \rightarrow \frac{\partial f}{\partial x_{1}}(P) ; \frac{\partial f}{\partial x_{2}}\left(x_{1}, c_{1}\right) \rightarrow \frac{\partial f}{\partial x_{1}}(P) \Rightarrow \frac{|R(x)|}{\|x-P\|} \longrightarrow 0 .
$$

$\Rightarrow f$ es diferenciable en P. sto no lo melen tomian en el firmal.
Def: unva función $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ es una transformación lineal si
(1) $T(x+y)=T(x)+T(y) \quad \forall x, y \in \mathbb{R}^{n}$
(2) $T(\lambda \cdot x)=\lambda \cdot T(x) \quad \forall \lambda \in \mathbb{R}, x \in \mathbb{R}^{n}$.

$$
T(\overrightarrow{0})=\overrightarrow{0}
$$

Ejemplo: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
T\left(x_{1}, x_{2}\right)=\left(x_{1}-5 x_{2}, x_{1}+8 x_{2}\right)
$$

Def:, $B=\left\{\begin{array}{l}e_{1}, e_{2}, \ldots . \\ \text { Can } \\ \text { Case }\end{array}\right\} \quad ; \quad e_{j}=\left(\begin{array}{c}0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right) ; j \quad x=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$

$$
x=x_{1} \cdot l_{1}+x_{2} \cdot l_{2}+\cdots+x_{n} l_{n}
$$

$\Rightarrow T(x)=x_{1} \cdot T\left(\ell_{1}\right)+x_{2} \cdot T\left(l_{2}\right)+\cdots+x_{n} \cdot T\left(l_{n}\right) .($ si T es lineal).

$$
\begin{aligned}
& A=[T] \in \mathbb{R}^{n \times m} \operatorname{mincolumnas.}_{\text {nfilas }}^{\text {Matriz de } T \text { enlabose canónica. }}
\end{aligned} ; A=\left(a_{i j}\right)_{\text {columnej }}^{\text {filai }} ; a_{i j}=\left(T\left(e_{j}\right)\right)_{i} .
$$

Matriz de Tenlabase canónica.
$T(x)_{i}=\sum_{j=1}^{n} a_{i j} x_{j} ; T(x)=A \cdot x \rightarrow$ Producto de Rcatrices

$$
\begin{aligned}
& T \cdot\binom{x_{1}}{x_{2}}=\binom{8 x_{1}-5 x_{2}}{16 x_{1}+3 x_{2}} ; T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} ; l_{1}=\binom{1}{0} ; l_{2}\binom{0}{1} \\
& A=\left(T\left(l_{1}\right) T\left(l_{2}\right)\right)=\left(\begin{array}{cc}
8 & -5 \\
16 & 3
\end{array}\right) ; T\left(l_{1}\right)=\binom{8}{16} ; T\left(l_{2}\right)=\binom{-5}{3} \\
& A \cdot X=\left(\begin{array}{cc}
8 & -5 \\
16 & 3
\end{array}\right) \cdot\binom{x_{1}}{x_{2}}=\frac{\binom{8 x_{1}-5 x_{2}}{16 x_{1}+3 x_{2}}}{2 \times 1}=T(x)
\end{aligned}
$$

Obs: Toda hauesformación linual $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ es de la forma $T(x)=A \cdot X$ donde $A \in \mathbb{R}^{n \times m}$ es una nuatiz, y cualquier función de esta formar es una tausfornación lineal (Hay un isomor Fismo).
Def: Sea $f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, P \in D^{0}$,
fes diferenciable en $P \Leftrightarrow$ exste una hausformación lireal $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ Talque, on un outornode $P: f(x)=f(P)+T(x-P)+R(x)$, donde $\lim _{x \rightarrow p} \frac{\|R(x)\|}{\|x-P\|}=0$.

La transfamación lineal T (que si existe, es cúnica) se llama La diferencial de fen Py se wota $D_{f}(P)$.
Obs: si $n=m=1 ; f: \mathbb{R} \rightarrow \mathbb{R}$; toda hausfonnación limeal $T: \mathbb{R} \rightarrow \mathbb{R}$ es de la forma $T_{\alpha}(x)=\alpha \cdot x$ con $\alpha \in \mathbb{R}$,
Eg: $f(x)=a x+b$ es una T. lineal $\Leftrightarrow b=0$.

- Fes diferenciable en P y $D_{f}(P)=T_{\alpha} \Leftrightarrow$ fesdecivable en P y $f^{\prime}(P)=\alpha$.

Notación: $\quad y=y(x) ; \quad \begin{aligned} & d y \\ & d x=y^{\prime}(x) ;\end{aligned} \quad \begin{aligned} & d y: \mathbb{R} \rightarrow \mathbb{R} \text { es mo t. limeal } \\ & d x: \mathbb{R} \rightarrow \mathbb{R} ; d x(P)=p .\end{aligned}$ $d x: \mathbb{R} \rightarrow \mathbb{R} ; d x(P)=p$.
Ef: $\underset{\text { Ecuación }}{y^{\prime}(x)=y\left(\frac{d y}{d x}=y\right.} \Leftrightarrow \frac{d y}{y}=d x$
diferencial.

$$
\begin{aligned}
& \int \frac{d y}{y}=\int d x \quad d y\left(x_{0}\right)(P)=f^{\prime}\left(x_{0}\right) \cdot P \\
& h y=x+c \\
& y=e^{x+c}
\end{aligned}
$$

Def: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}(m=1) ; T: \mathbb{R}^{n} \rightarrow \mathbb{R} ; \alpha=\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right] \in \mathbb{R}^{n}=[T] ; x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{n}\end{array}\right)$

$$
\begin{aligned}
& T(x)=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n} \\
&=\left\langle\alpha_{1} x\right\rangle=\alpha_{0} \cdot x \\
& D_{f}(p)(x)=\left\langle\nabla f(p), x^{\prime}\right\rangle ; \quad \alpha_{j}=\frac{\partial f}{\partial x_{j}}(p)
\end{aligned}
$$

TEOREMA: $f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, P \in D^{0} ; f(x)=\left(\begin{array}{l}f_{1}(x) \\ f_{1}(x) \\ f_{m}(x)\end{array}\right) ; f ; D \rightarrow \mathbb{R}$.
(1) Fes diferenciable en $P \Leftrightarrow$ todos las couponertes $f j$ son diferenciables en P
(2) En ese caso, la duatriz de la diferencial de fen PO:

$$
\left[D_{f}(P)\right]=\frac{\partial f_{i}}{\partial x_{j}}(P) \quad \begin{aligned}
& i=v_{i} \text { de filan } \\
& j=v^{2} \text { de columua. }
\end{aligned} ;\left[D_{f}(P)\right] \in \mathbb{R}^{n \times m} \text { infilos } \text { miounars. }
$$

$$
\underbrace{\left[D_{f}(p)\right]}_{\in \mathbb{R}^{3 \times 2}}=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}}(x) & \frac{\partial f_{1}(x)}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}}(x) & \frac{\partial f_{2}(x)}{\partial x_{2}} \\
\frac{\partial f_{3}}{\partial x_{1}}(x) & \frac{\partial f_{3}}{\partial x_{2}}(x)
\end{array}\right)=\left(\begin{array}{cc}
2 x_{1} & 0 \\
x_{2} & x_{1} \\
1 & 1
\end{array}\right)
$$

¿Cual es la dausfonnación lineal que duejor aproxima a fer on entornu de $P=\binom{1}{2} \in \mathbb{R}^{2}$?
Rta: $T=D_{f}(P) ;[T]=\left(\begin{array}{ll}2 & 0 \\ 2 & 1 \\ 1 & 1\end{array}\right)$

$$
T(x)=\underbrace{\left(\begin{array}{ll}
2 & 0 \\
2 & 1 \\
1 & 1
\end{array}\right)}_{3 x_{2}} \cdot \frac{\binom{x_{1}}{x_{2}}}{2 x_{1}}=\frac{\left(\begin{array}{l}
2 x_{1} \\
2 x_{1}+x_{2} \\
x_{1}+x_{2}
\end{array}\right)}{3 x_{1}}
$$

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}
$$

TEOREMA (close pasada): $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, p=\left(x_{0}, y_{0}\right) \in \mathbb{R}$, fes difereuciable eup $p \Leftrightarrow \exists \alpha, \beta \in \mathbb{R}$

$$
\begin{aligned}
& f(x, y)=f\left(x_{0}, y_{0}\right)+\frac{\alpha\left(x-x_{0}\right)+\beta\left(y-y_{0}\right)}{T((x, y)-p)}+R(x, y) \text { donde } \lim _{x \rightarrow p} \frac{|R(x, y)|}{\|(x, y)-p\|}=0 \\
& T(x, y)=\alpha x+\beta y ; T: \mathbb{R}^{2} \rightarrow \mathbb{R} . \\
& {[T]=[\alpha \beta]} \\
& \alpha=\frac{\partial f}{\partial x}(P) ; \beta=\frac{\partial f}{\partial y}(P) .
\end{aligned}
$$

Algo interesante (supuestamente)

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R}^{m} \quad(\text { pos ef } m=3) \\
& {\left[D_{f}(t)\right]=\left(\begin{array}{c}
f_{1}^{\prime}(t) \\
f_{2}^{\prime}(t) \\
\vdots \\
f_{m}^{\prime}(t)
\end{array}\right) \quad f_{j}^{\prime}(t)=\frac{\partial f_{j}(t)}{\partial t}}
\end{aligned}
$$

हf: $m=2$.

$$
f(t)=\binom{\cos t}{\operatorname{sen} t}
$$

$$
f^{\prime}(t)=\left[D_{f}(t)\right]=\binom{-\operatorname{sen} t}{\cos t}
$$

Otra cosa: (el profesa sotá uspirado, porece)
$q(t)=(x(t), y(t), z(t))$ Posición. $\quad q: \mathbb{R} \longrightarrow \mathbb{R}^{3}$.
$\dot{q}(t)=(\dot{x}(t), \dot{y}(t), \dot{z}(t))$ Velocidad.
$\ddot{q}(t)=(\ddot{x}(t), \ddot{y}(t), \ddot{z}(t))$ Aceleración.

$$
F(q)=m \ddot{g}(t)
$$

$$
F: \stackrel{\rightharpoonup}{\mathbb{R}^{3}} \rightarrow \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
$$

fueza, $m \in \mathbb{R}$ masa.

$$
\begin{aligned}
& F(q)=G_{m} M\left(\frac{-q}{\|q\|^{3}}\right) \\
& \left\|\frac{-q}{\|q\|^{3}}\right\|=\frac{1}{\|q\|^{2}}
\end{aligned}
$$

$$
F=-\nabla V ; \quad V(q)=\frac{1}{\|q\|}
$$

Con tado esto el tipo nonvás quiso decin que todos los "tecnicisnuos" que estanues viendo son para hacer este Tipo de cosas.
Osea, hunuo.

Regla dela cadena.

$$
f: A \rightarrow B ; g: B \rightarrow C ; h: A \rightarrow C .
$$

$$
h=g \circ f(\rightarrow \text { comporicion de } f \text { con } g \text {. }
$$

des: $(f \circ g) \circ h=f \circ(g \circ h) \Rightarrow L_{A}$ Composicion $D E$ Funciones es asociativa
Obs: La comporición no es conmutativa: fog $\neq g \circ f$
g:

$$
\left.\begin{array}{l}
f(x)=\operatorname{sen} x \\
g(y)=y^{2}
\end{array}\right\} \begin{aligned}
& g \circ f(x)=(\operatorname{sen} x)^{2} \\
& f \circ g(x)=\operatorname{sen}\left(x^{2}\right)
\end{aligned}
$$

Obs: Si $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \wedge S: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ son transformaciones lineales
\Rightarrow SoT: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ es una tomsfonuación lineal.
Adumás: $\underbrace{[S \cdot T]}_{\mathbb{R}^{n \times k}}=\frac{[S]}{\mathbb{R}^{n \times m}} \cdot \frac{[T]}{\mathbb{R}^{m \times k}}$ (Indica: Producto de matrices)
Regla dela cadena: $\quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \wedge g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$
Wef: Sea $p \in \mathbb{R}^{n} ; q=f(p), \quad h=g \circ f, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$.
Sif es diferenciable en P y g esdiferenciable en $q=f(p)$, entonces $h=g$ of es diferenciable en P y

$$
\begin{aligned}
& D_{h}(p)=D_{g}(q) \cdot D_{f}(p)=D_{g}(f(p)) \cdot D_{f(p)} \\
& \Rightarrow\left[D_{h}(p)\right]=\left[D_{g}(q)\right] \cdot\left[D_{f}(p)\right]
\end{aligned}
$$

CAMBIODE coordenadas. \Rightarrow Cocrdenadas polares.

$$
\underset{x_{\theta}}{x_{x}}{ }_{x}^{(x, y)}\left\{\begin{array}{l}
r=\|(x, y)\|=\sqrt{x^{2}+y^{2}} \\
\operatorname{tg} \theta=\frac{y}{x}
\end{array} ; \begin{cases}x=r \cdot \cos \theta ; & h: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
y=r \cdot \operatorname{sen} \theta & g: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\end{cases}\right.
$$

$h=g \circ f$
$g(x, 4)=$ una coutidad \& en corderiados contesianos.
$h(r, \theta)=$ lathimua cantidad en coordenadas polares.
$h(r, \theta)=g(r \cos \theta, r \operatorname{sen} \theta)$.
¿Qué relación hay entre $\frac{\partial g}{\partial x}, \frac{\partial g}{d y}$ ^ $\frac{\partial h}{\partial r}, \frac{\partial h}{\partial \theta}$?

$$
f(r, \theta)=(r \cos \theta, r \operatorname{sen} \theta)
$$

$$
\begin{aligned}
& p=(r, \theta) ; q=f(p)=(r \operatorname{so\theta }, r \operatorname{con} \theta)=(x, y) \\
& \frac{\left[D_{h}(p)\right]}{\in \mathbb{R}^{1 \times 2}}=\frac{\left[D_{g}(q)\right]}{\mathbb{R}^{1 \times 2}} \cdot \frac{\left[D_{f}(p)\right]}{\mathbb{R}^{2 \times 2}} \\
& {\left[\frac{\partial h}{\partial r}(p) \cdot \frac{\partial h}{\partial \theta}(p)\right]=\left[\frac{\partial g}{\partial r}(q) \frac{\partial g(q)}{\partial \theta}\right]=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial r}(p) & \frac{\partial f_{1}(p)}{\partial \theta} \\
\frac{\partial f_{2}(p)}{\partial r} & \frac{\partial f_{2}}{\partial \theta}(p)
\end{array}\right]=\left[D_{f}(r, \theta)\right]}
\end{aligned}
$$

$$
\left[\Delta_{f}(r, \theta)\right]=\left[\begin{array}{cc}
\cos \theta & -r \operatorname{sen} \theta \\
\operatorname{sen} \theta & r \cos \theta
\end{array}\right] \Rightarrow \begin{aligned}
& \text { Matriz jacobiana del cambio } \\
& \text { de coordenadas polares. }
\end{aligned}
$$

$$
J=\operatorname{det}[D f(r, \theta)](\text { Jacubiano })
$$

$$
=r \cos ^{2} \theta+r \operatorname{sen}^{2} \theta .
$$

$$
=r .
$$

$$
\left\{\begin{array}{l}
\frac{\partial h}{\partial r}(p)=\cos \theta \frac{\partial g}{\partial x}(q)+\operatorname{sen} \theta \frac{\partial g}{\partial x}(q) \\
\frac{\partial h}{\partial \theta}(p)=(-r \operatorname{sen} \theta) \frac{\partial g}{\partial y}(q)+r \cos \theta\left(\frac{\partial g}{\partial y}(q)\right)
\end{array}\right.
$$

Ejemplo: $g(x, y)=x^{2}+y^{2} \quad ; \quad h(r, \theta)=r^{2}$

$$
\begin{aligned}
2 r & =\cos \theta \cdot 2 x+\operatorname{sen} \theta \cdot 2 y \\
& =2\left(\cos ^{2} \theta+r \operatorname{sen}^{2} \theta\right) \\
& =2 r \\
-0 & =(-r \operatorname{sen} \theta) \cdot 2 x+r \cos \theta 2 y \\
& =-r \operatorname{sen} \theta \cos \theta \cdot 2+r \cos \theta \operatorname{sen} \theta \cdot 2 .
\end{aligned}
$$

OTRA SITUACION FRECUENT:: $\quad f: \mathbb{R} \rightarrow \mathbb{R}^{n} ; g: \mathbb{R}^{n} \rightarrow \mathbb{R} ; h=$ gof $: \mathbb{R} \rightarrow \mathbb{R}$.

$$
\begin{aligned}
& {\left[D_{h}(t)\right]=\frac{\left[D_{g}(q)\right]}{\mathbb{R}^{n \times n}} \cdot \frac{[D f(t)]}{\mathbb{R}^{n \times 1}}} \\
& {\left[h^{\prime}(t)\right]=\left[\frac{\partial g}{\partial x_{1}}(q) ; \frac{\partial g}{\partial x_{2}}(q) \cdots \frac{\partial g}{\partial x_{n}}(q)\right) \cdot\left(\begin{array}{c}
\frac{\partial f_{1}}{\partial t} \\
\frac{\partial f_{2}}{\partial t} \\
\vdots \\
\frac{\partial f_{n}}{\partial t}
\end{array}\right) ; h^{\prime}(t)=\left\langle\nabla g(q), f^{\prime}(t)\right\rangle}
\end{aligned}
$$

$$
h^{\prime}(t)=\left\langle\nabla g(q), f^{\prime}(t)\right\rangle
$$

Ejemplo: Poriciou $q(t)=(x(t), y(t), z(t))$ (ra a jugan el codde $f, n=3)$.
fuerze. $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, m_{F_{T} \in \mathbb{R}}$
$F(q(t))=m \cdot \ddot{q}(t) \rightarrow 2^{\text {da }}$ leyde Newton.
En Auvchor nuodelos $F(q)=-\nabla V(q)$ doude $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ (potencial)

TEOREMA: la euerg'a se lonsera en ell aupo; $\frac{d E}{d t}=0$.

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{1}{2} m\|\dot{q}(t)\|^{2}\right) & =\frac{1}{2} m\langle\nabla g(\dot{q}(t)) ; \ddot{q}(t)\rangle \quad d t \\
& =\frac{1}{2} m\langle 2 \dot{q}(t) ; \ddot{q}(t)\rangle=m\langle\dot{q}(t), \ddot{q}(t)\rangle
\end{aligned}
$$

verga usan (*); $v=(x, y, z)$.

$$
\begin{aligned}
& g(v)=\|v\|^{2}=x^{2}+y^{2}+z^{2} ; \nabla g(v)=(2 x, 2 y, 2 z)=2 v . \\
& g: \mathbb{R}^{3} \rightarrow \mathbb{R} . \\
& f(t)=\dot{q}(t) \\
& \frac{\partial E}{\partial t}=m\langle\dot{q}(t), \ddot{q}(t)\rangle+\langle\nabla v(q(t)), \dot{q}(t)\rangle \\
&=\left\langle\ddot{q}(t), \frac{m \ddot{q}(t)+\nabla v(q(t))\rangle}{=\overrightarrow{0}}=0 .\right.
\end{aligned}
$$

por la $2 d a$ ley de Newton.
Taylor en una variable.
Def: $f: I \rightarrow \mathbb{R}, I \subseteq \mathbb{R}$ intervalo abiento, fes de clase $C^{k} \mathrm{en} I$ sitadas las deriavdas $f=f^{(0)} ; f^{(1)}=f^{\prime} ; f^{(2)}=f^{\prime \prime}, \cdots, f^{(k)}$ existeu, y son continuas en el cuterralo I.

$$
\left\{\begin{array}{l}
f^{(0)}=f \\
f^{(k+1)}=\left(f^{(k)}\right)^{\prime}
\end{array}\right.
$$

Teorema: si f es de clase C^{k} en I, $a \in I$; existe un ćnica polinomia $P(x)$ de grado $\leqslant k$ talque $f^{(j)}(a)=P^{(j)}(a)$ para $j=0,1,2, \ldots, k$.
Explícitamente: $P(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(k)}(a)}{k!}(x-a)^{k} \rightarrow$ Taylor de
Yciescribinuos $f(x)=P(x)+\sqrt{R_{k}(x)} \rightarrow$ el resto de taylor de orden k entonces: $\lim _{x \rightarrow a} \frac{\left|R_{k}(x)\right|}{|x-a|^{k}}=0$.
si $f \in C^{k+1}(I)$ exiote $c \in(a, x) /$
$R_{k}(x)=\frac{f^{(k+1)}(c)(x-a)^{k+1}}{(k+1)!} \Rightarrow$ Resto en la forma de Lagrange
Ejeuplo:

$$
\begin{aligned}
& f(x)=\operatorname{sen} x \\
& f^{\prime}(x)=\cos x \\
& f^{\prime \prime}(x)=-\operatorname{sen} x \\
& f(0)=0 \\
& a=0 \text {. } \\
& f^{\prime \prime \prime}(x)=-\cos x \\
& f^{\prime N}(x)=\operatorname{sen} x=f \\
& f^{\prime \prime}(0)=1 \\
& a=0 \\
& f^{\prime}(x)=\cos x \\
& f^{\prime \prime}(x)=-\operatorname{sen} x \\
& \begin{array}{l}
\operatorname{fes}^{\prime} c^{\infty} \\
\left(\operatorname{ses} c^{k} \forall k\right)
\end{array} \\
& f^{(k)}(x)=\left\{\begin{array}{lll}
\sin x & \text { si } & k \equiv 0(\bmod 4) \\
\cos x & \text { si } & k \equiv 1(\bmod 4) \\
-\operatorname{sen} x & \text { si } & k \equiv 2(\bmod 4) \\
-\cos x & \text { si } & k \equiv 3(\bmod 4)
\end{array}\right. \\
& P_{k}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+(-1)^{j} \frac{x^{k}}{k!} ; k=2 j+1 \text {. } \\
& \sin x=P_{k}(x)+R_{k}(x) \quad c \in(0, x) \\
& \text { y }\left|R_{k}\right|=\left|\frac{f^{(k+1)}(c) x^{k+1}}{(k+1)!}\right| \leqslant \frac{|x|^{k+1}}{(k+1)!} \quad\left(\begin{array}{l}
\text { eu es } k e: \\
\text { ejemplo }
\end{array} \left\lvert\, \begin{array}{l}
|\operatorname{sen} x| \leqslant 1 \\
|\cos x| \leqslant 1
\end{array}\right.\right)
\end{aligned}
$$

en ESTE ejuupls, $R_{k}(x) \rightarrow 0$ quando $k \rightarrow+\infty$.

$$
\operatorname{sen} x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+\frac{x^{2 j+1}}{(2 j+1)!}(-1)^{j}+\cdots
$$

$\sum_{j=0}^{\infty} \frac{x^{2 j+1}(-1)^{j}}{(2 j+1)!} \quad$ Serie de Taylor del seno. (serie de poteucias)
Obs: Seux es una función analítica.
Egeuplo: $f(x)=e^{x} ; f^{(x)}(x)=e^{x} ; a=0 ; f^{(k)}(0)=1$

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{k}}{k!}+R_{k}(x) \\
& R_{k}(x)=\frac{e^{c} x^{k+1}}{(k+1)!} ; c \in(0, x) \\
& \text { si } x>0 \Rightarrow 0<R_{k}(x) \leqslant \frac{e^{k} x^{k+1}}{(k+1)!} \\
& \text { n } x<0 \Rightarrow\left|R_{k}(x)\right| \leqslant \cdots \cdots \\
& e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \quad \text { Secie de taylor de } e^{x}
\end{aligned}
$$

$$
\begin{aligned}
& P(k)=a_{0}+a_{1}(x-a)+a_{2}(x-a)^{2}+\cdots+a_{k}(x-a)^{k} \\
& P^{(j)}(a)=f^{(j)}(a) \Leftrightarrow a_{j}=\frac{f^{(j)}(a)}{j!} \quad \forall j=0_{1}, 2, \cdots, k . \\
& \text { 上if } s c^{k+1} \Rightarrow f(x)=P(x)+R(x) \quad \operatorname{con} B(x)=\frac{f^{(k+1)}(c)(x-a)^{k+1}}{(k+1)!} \text { yc } c(a, x) .
\end{aligned}
$$

Fyados x y a; definis una función auxilias:

$$
g(t)=f(x)-f(t)-f^{\prime}(t)(x-t)-\frac{f^{\prime \prime}(t)(x-t)^{2}}{2}-\cdots-\frac{f^{(k)}(t)(x-t)^{k}}{k}-\frac{M(x-t)^{k+1}}{(k+1)!}
$$

doude M es una coustante que se elife para que se eumpla la Hipótesis del teocemo de Rolle en (a, x)
$g(a)=g(x)=0 ;$ Usamos polle $\Rightarrow \exists c \in(a, x)$ donde $g^{i}(c)=0$.

$$
\begin{aligned}
& g^{\prime}(t)=-f^{\prime}(t)-f^{\prime}(t)(x-t)+f^{\prime}(t)-1-f^{\prime \prime \prime}(t) \frac{(x-t)^{2}}{2}+f^{\prime \prime}(t)(x-t) \\
&-\frac{f^{(k+1)}(t)(x-t)^{\prime}}{k!}+f^{(k)}(t)(x-t)^{k-1}+\cdots+\frac{M(x-t)^{k}}{k!}= \\
&= {\left[\frac{M-f^{(k+1)}(t)}{k!}\right](x-t)^{k} } \\
& \Rightarrow g^{\prime}(c)=\left[\frac{M-f^{(k+1)}(c)}{k!}\right](x-t)^{k}=0 \Longrightarrow M=f^{(k+1)}(c)
\end{aligned}
$$

Ecvaluauios en $t=a$.

$$
\begin{aligned}
0 & =g(a)=f(x)-P(x)-\frac{f^{(k+1)}(c)}{(k+1)!}(x-t)^{k+1} \\
& \Rightarrow f(x)=P(x)+\frac{f^{(k+1)}(c)}{(k+1)!}(x-a)^{k+1}
\end{aligned}
$$

Lites C^{k}
oden $k-1 \quad f(x)=f(a)+f^{\prime}(a)(x-a)+\cdots+\frac{f^{(k+1)}(a)^{(k+1)!}}{(k-a)^{k+1}}+\frac{f^{(k)}(c)}{k!}(x-a)$ donde $c \in(a, x)$ /por oho lado:
adunk $\begin{aligned} & f(x)=f(a)+f^{\prime}(a)(x-a)+\cdots+\frac{f_{(a-a)}^{(k-1)}}{(k-1)!}(x-a)^{k-1} \\ & \text { resto: }\end{aligned}$

$$
\begin{aligned}
& 0=\frac{f^{(k)}(c)}{k!}(x-a)^{k}-\frac{f^{(k)}(a)}{k!}(x-a)^{k}-R_{k}(x) \\
& R_{k}(x)=\frac{\left[f^{(k)}(c)-f^{(k)}(a)\right]}{k!}(x-a)^{k} \text { para algim } e \in(a, x) \\
& \begin{array}{l}
\text { Sifes } c^{k} \\
\Rightarrow\left|R_{k}(x)\right| \\
\Rightarrow\left|f^{k(c)}-f^{(k)}\right|
\end{array} \rightarrow 0 \text { cuaudo } x \rightarrow a\left\{\begin{array}{l}
\text { cuando } x \rightarrow a
\end{array} \rightarrow f^{(k)} \rightarrow f^{(k)} \rightarrow f^{(k)}\right. \\
& \left\{\begin{array}{l}
\text { Pues comur } f \text { es } C^{k} \\
f^{(k+1)} \text { es continua. }
\end{array}\right.
\end{aligned}
$$

Ejemplo: $g(x)= \begin{cases}e^{-1 / x} & \text { si } x>0 \\ 0 & \text { si } x \leqslant 0 .\end{cases}$

$$
g^{\prime}(x)=\left\{\begin{array}{ll}
e^{-1 / x}\left(\frac{1}{x^{2}}\right) & \text { si } x>0 \\
0 & \text { si } x<0
\end{array} \quad g g^{\prime}(0)=\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x}=\lim _{x \rightarrow 0} \frac{e^{-1 / x}}{x}=0\right.
$$

ges $c^{\infty}: g^{(k)}(0)=0 \quad \forall k$
$f(x)=P_{k}(x)+R_{k}(x) \Rightarrow$ en este ejemplo $P_{k}(x)=0$.
Khjo $\lim _{x \rightarrow 0} \frac{\left|R_{k}(x)\right|}{|x-0|^{k}}=0 ; \lim _{x \rightarrow 0} \frac{e^{-1 / x}}{|x|^{k}}=0$.
En este ejeuplo No ES cierto: $R_{k}(x) \rightarrow(0)$ cuando $k \rightarrow \infty$.
\Rightarrow (ESTA no es igual a su seriede taylor.)

RePASO: Taylor en una variable
TEOREMA: sif: $I \subseteq \mathbb{R} \rightarrow \mathbb{R}$; I utermalo abierto, $a \in \mathbb{R}, k \in \mathbb{N} ; f \in C^{k}(I)$ Entonces excote un unico polinornio $P_{k}(x)$ de grado $\leqslant k$ tal que" $P_{k}^{(j)}(a)=f^{(j)}(a)$ para $j=0,1,2, \ldots, k$.
Explícitemeuse: $P_{k}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(k)}}{k!}(a)(x-a)^{k}$

$$
=\sum_{j=0}^{k} \frac{f^{(j)}(a)}{j!} \cdot(x-a)^{j}
$$

Si escribiumos $f(x)=P_{k}(x)+R_{k}(x)$
Entonces $\left(\right.$ sifes $\left.C^{k}\right): \lim _{x \rightarrow a} \frac{\left|R_{k}(a)\right|}{|x-a|^{k}}=0$
Si $f \in c^{k+1}(I): \quad R_{k}(x)=\frac{f^{(k+1)}(c)}{(k+1)!}(x-a)^{k+1} \quad$ con $c \in(a, x)$
TAYLOR EN DOS variables
Expresión de lagrange del resto.

$$
\begin{aligned}
& f^{\prime}(a)=0, f^{\prime \prime}(a)>0 \Rightarrow \text { minimo local } \\
& f^{\prime}(a)=0, f^{\prime \prime}(a)<0 \Rightarrow \text { máximo local }
\end{aligned}
$$

$$
\begin{aligned}
& P(x)=f\left(x_{1}\right)+\frac{f^{\prime}(x,)\left(x-x_{1}\right)}{=0}+\frac{f^{\prime \prime}(x i)}{2}\left(x-x_{1}\right)^{2} \\
& f(x, y) ; \quad \frac{\partial f}{\partial x}(x, y) ; \frac{\partial f}{\partial y}(x, y) \\
& f_{x x}(x, y)=\frac{\partial^{2} f}{\partial x^{2}}(x, y)=\frac{\partial f}{\partial x}\left(\frac{\partial f}{\partial x}(x, y)\right) ; \quad f_{y y}(x, y)=\frac{\partial^{2} f}{\partial y^{2}}(x, y)=\frac{\partial f}{\partial y}\left(\frac{\partial f}{\partial y}(x, y)\right) \\
& \left(f_{x}\right)_{y}(x, y)=\frac{\partial f f}{\partial y}\left(\frac{\partial f}{\partial x}(x, y)\right) \quad ; \quad\left(f_{y}\right)_{x}(x, y)=\frac{\partial f}{\partial x}\left(\frac{\partial f}{\partial y}(x, y)\right)
\end{aligned}
$$

Eemplo: $f(x, y)=x y^{3} ; \quad \frac{\partial f}{\partial x}=f_{x}=y^{3} ; \quad \frac{\partial f}{\partial y}=f_{y}=3 x y^{2}$.

$$
f_{x x}=0 ; f_{y y}=6 x y ; \frac{\left(f_{x}\right)_{y}=3 y^{2} ;}{f} \quad\left(f_{y}\right)_{x}=3 y^{2}
$$

$f_{x y}=f_{y x} \Rightarrow$ esto sóla male para funcioñes "Buenas".

Def: sea $f\left(x_{1}, x_{2}, \cdots, x_{n}\right) ;\left(f x_{i}\right)_{x_{j}} ;\left(f_{x_{j}}\right)_{x_{i}}$.

- Una función $f: \Omega \rightarrow \mathbb{R}, \Omega \subseteq \mathbb{R}^{n}$ abiento, se dice de clase C^{k} si todas sus derivadas parciales de ordeu $\leq K$ existen y son continuas en Ω.
- fes c^{∞} en Ω si fes $c^{k} \forall k$

$$
f(x, y, z) ;\left(\left(f_{x}\right)_{z}\right)_{y} ;\left(\left(f_{x}\right)_{y}\right)_{z}
$$

TEOREMA: Supongamos que f es de elase c^{2} en un abiento $\Omega \subseteq \mathbb{R}^{2}$ Eutonces $\left(f_{x_{i}}\right)_{x_{j}}(P)=\left(f_{x_{j}}\right)_{x_{i}}(P), \forall P \in \Omega ; \forall 1 \leqslant i, j \leqslant n$.

- Sifes $C^{3}(\Omega)$:

$$
\left(\left(f_{x_{i}}\right)_{x_{j}}\right)_{x_{k}}(P)=\left(\left(f_{x_{j}}\right)_{x_{k}}\right)_{x_{i}}
$$

... etádera.
Lifes $C^{2}: f_{x y}(P)=\left(f_{x}\right)_{y}(P)$

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}
$$

sifes $c^{3}: \quad f_{x y x}=\left(\left(f_{x}\right)_{y}\right)_{x}=\frac{d^{3} f}{d x^{2} d y}$
Lifes C^{k} :

$$
\begin{array}{ll}
\frac{\partial^{k} f}{d x_{1}^{k_{1}} d x_{2}^{\alpha_{2}} \cdots d x_{n}^{\alpha_{n}}} & D^{\alpha} f \\
\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=k & ; \alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) \in \mathbb{N}_{0}
\end{array}
$$

$\because f(x, y) ; f: \mathbb{R}^{2} \rightarrow \mathbb{R} ; P=\left(x_{0}, y_{0}\right) ; f \in c^{2}\left(0 f \in C^{3}\right), x_{0}, y_{0}, h, k \in \mathbb{R}, q=(h, k)$.

$$
g: \mathbb{R} \rightarrow \mathbb{R}
$$

$$
g(t)=f(1+t v)=f\left(x_{0}+t h, y_{0}+t k\right)
$$

$\left.g(t)=g(0)+g^{\prime}(0) t+g^{\prime \prime}(0) \frac{t^{2}}{2}+\widetilde{R}_{2}(t) v\right) \Rightarrow$ Dearrolle $g(t)$ en Taylor ahededor de $t=0$

$$
\text { - } g(0)=f(p), \quad g=f \circ \alpha, \alpha(t)=p+t v
$$

$$
\begin{aligned}
R_{2}(x) & =\hat{R}_{2}(1, v) \\
v & =x-p
\end{aligned}
$$

$$
g^{\prime}(t)=\left\langle\nabla f(\alpha(t)), \alpha^{\prime}(t)\right\rangle=\langle\nabla f(P+t v), v\rangle
$$

$$
g^{\prime}(0)=\frac{\partial f}{\partial x}(P) \cdot h+\frac{\partial f}{\partial y}(P) \cdot k
$$

$$
\begin{aligned}
& g^{\prime \prime}(t)=\frac{\partial}{\partial t}\left[\frac{\partial f}{\partial x}(P+t v)\right] \cdot h+\frac{\partial}{\partial t}\left[\frac{\partial f}{\partial y}(P+t v)\right] \cdot k \\
&=\frac{\partial}{\partial t}\left(\frac{\partial f}{\partial x} 0 \alpha(t)\right) \cdot h+\frac{\partial}{\partial t}\left(\frac{\partial f}{\partial y} o \alpha(t)\right) k \\
&=\left\langle\nabla\left(\frac{\partial f}{\partial x}\right)(\alpha(t)), \alpha^{\prime}(t)\right\rangle \cdot h+\left\langle\nabla\left(\frac{\partial f}{\partial y}\right)(\alpha(t)\rangle, \alpha^{\prime}(t)\right\rangle \cdot k \\
&=\left[\frac{\partial^{2} f}{\partial x^{2}}(P+t v) \cdot h+\frac{\partial^{2} f}{\partial x y}(P+t v) \cdot k\right] \cdot h+\left\{\frac{\partial^{2} f}{\partial x y}(P+t v) h+\frac{\partial^{2} f}{\partial y^{2}}(P+t v) k\right] k . \\
&=\frac{\partial^{2} f}{\partial x^{2}}(P+t v) h^{2}+2 \frac{\partial^{2} f}{\partial x y}(P+t v) h k+\frac{d^{2} f}{\partial y^{2}}(P+t v) k^{2} \\
& g(t)=f(p)+\left[\frac{\partial f}{\partial x}(P) h+\frac{\partial f}{\partial y}(P) k\right] t \\
& g^{\prime}(0) \\
&+\frac{1}{2}\left[\frac{\partial^{2} f}{\partial x^{2}}(P) h^{2}+2 \frac{\partial^{2} f}{\partial x y}(P) h k+\frac{\partial^{2} f}{\partial y^{2}}(P) k^{2}\right] \cdot t^{2}+\widetilde{R}_{2}(t) .
\end{aligned}
$$

Finalmente evaluío en $t=1$ yr recuerdo $g(1)=(p+t v)$.

TEOREMA DE TAYLOR EN 2 vARIABLES
sea $\Omega \subseteq \mathbb{R}^{2}$ abierto, $f: \Omega \rightarrow \mathbb{R}$ de elase $c^{2} ; P \in \Omega, v=(h, k)$ Supongamos $B(P, r) \subseteq \Omega$
Para $x=P+v$ con $\|v\|=r$.

$$
\begin{aligned}
f(x) & =f(P)+\left[\frac{\partial f}{\partial x}(P) \cdot h+\frac{\partial f}{\partial y}(P) k\right] \\
& +\frac{1}{2}\left[\frac{\partial^{2} f}{\partial x^{2}}(P) h^{2}+2 \frac{\partial f}{\partial x y}(P) h k+\frac{\partial^{2} f}{\partial y}(P) k^{2}\right]+R_{2}(x)
\end{aligned}
$$

donde $\lim _{x \rightarrow P} \frac{\left|R_{2}(x)\right|}{\|x-P\|^{2}}=0$.

$$
\begin{aligned}
& \cdot R_{2}(x)=\tilde{R}_{2}(1, v)=\tilde{R}_{2}\left(\frac{t}{\|v\| \|}, \frac{v r}{\|v-\|}\right) \\
& \Rightarrow \frac{R_{2}(x)}{(t / \mid v v \|)^{2}}=\frac{\tilde{R}_{2}\left(\frac{t}{\| v| |} ; \frac{N v}{\|v-\|}\right)}{\left(\frac{t}{\| v-1 \mid}\right)^{2}}=\frac{\|\mid v\|^{2} \tilde{R}_{2}^{2}\left(\frac{t}{\mid v v \|^{\prime}} \frac{N^{v}}{\|v-1\|}\right)}{t^{2}}
\end{aligned}
$$

$$
\begin{gathered}
\|x-p\|=\|v\| \\
\tilde{R}_{2}(t, \lambda v)=\tilde{R}_{2}(\lambda t, v) \\
\text { pues } x=p+t(\lambda v)=p+(t \lambda) v . \\
\lambda=\frac{1}{\|v\|} ; t=1 .
\end{gathered}
$$

sifsc ${ }^{3}$

$$
\begin{aligned}
& R_{2}(x)=\frac{1}{3!}\left[\frac{\partial^{3} f}{\partial x^{3}}(c) h^{3}+\frac{3 \partial^{3} f}{\partial x y^{2}}(c) h k^{2}+3 \frac{\partial^{3} f}{\partial x^{2} y}(c) h^{2} k+\frac{\partial^{3} f(c) k^{3}}{\partial y^{3}}\right] \\
& (h+k)^{3}=h^{3}+3 h^{2} k+3 h k^{2}+k^{3} .
\end{aligned}
$$

Formas cuadráticas

$$
\text { - } \left.\begin{array}{rl}
Q_{A}(v) & =a h^{2}+2 b h k+c k^{2} \quad \\
& =a h^{2}+b h k+b k h+c k^{2}
\end{array}\right] \begin{aligned}
& \text { Forma cuADRńtica EN } 2 \text { variabl } \\
& \text { v=(h,k). } \\
& \text { Puedo asociarle cuna muatuiz. }
\end{aligned}
$$

1. $A=\left(a_{i j}\right)$ es simétrica si $a_{i j}=a_{j i} \Rightarrow A^{t}=A . \quad \forall i, j$

$$
\begin{aligned}
&\langle A v, v\rangle=(A v)^{t} \cdot v=\left(v^{-t} A\right) v=(h \quad k)\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{l}
h \\
k
\end{array}\right) \\
&=(a h+b k \quad b h+c k)\binom{h}{k} \\
&=(a h+b k) h+(b h+c k) k=a h^{2}+b k h+b h k+c k^{2}=Q_{A}(v) \\
& X=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{n}
\end{array}\right) ; Y=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{n}
\end{array}\right) \Rightarrow\langle x, y\rangle=y^{t} \cdot x \\
&(A \cdot B)^{t}=B^{t} \cdot A .\left[\begin{array}{lll}
h & 0 & 4 \\
0 & \left.\quad \begin{array}{lll}
5 & \\
0 & -3 & -3 \\
4 & -3 & 0
\end{array}\right] \\
h & k & l
\end{array}\right.
\end{aligned}
$$

Def: Dada $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ de clase $C^{2}, P \in \mathbb{R}^{n}$
$H_{p}(f)=D^{2} f(P)=Q_{A} \Rightarrow$ Hessiano de fen P.
donde A es la matiz simétrica de $n \times n$ formada par las decivadas parcialer de segundoordeu.

$$
\begin{equation*}
A=\left(a_{i j}\right) ; \quad a_{i j}=\frac{\partial^{2} f}{\partial x_{i} d x_{j}}(p) \tag{P}
\end{equation*}
$$

TEOREMA de taylor (General).
$f: \Omega \subseteq \mathbb{R} \rightarrow \mathbb{R}$ de clase $C^{2}, p \in \Omega$. Sea $n>0 / B(p, r) \subseteq \Omega$; silv$\|<r$

$$
f(p+v)=f(p)+\langle\nabla f(p), v\rangle+\frac{1}{2} H_{p}(f)(v)+R_{2}(v)
$$

donde $\lim _{v \rightarrow 0} \frac{\left|R_{2}(v)\right|}{\|v\|^{2}}=0$

$$
\begin{aligned}
& f(p+v)=f(p)+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(p) \cdot v_{i}+\frac{1}{2} \sum_{i, j=1}^{n}=\frac{\partial^{2} f}{\partial x_{i}}\left(P x_{j}\right) v_{i} v_{j}+R_{2}(v) \\
& \underline{\text { Sifes } C^{3}}, \left.R_{2}(v)=\frac{1}{3!} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^{3} f}{\partial x_{i} \partial x_{j} \partial x_{k}}(c) v_{i} v_{j} v_{k} \quad \right\rvert\, P_{p}^{P+v} \quad c=P+\theta v \\
& \theta \in(0,1) .
\end{aligned}
$$

Ejample: $f(x, y)=e^{x y} ; P=(0,0)$ esum porto crítico.

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(x, 4)=y \cdot e^{x y} ; \quad \frac{d f}{\partial y}(x, y)=x \cdot e^{x y} \\
& \frac{\partial^{2} f}{\partial x^{2}}(x, y)=y^{2} \cdot e^{x y} \quad ; \quad \frac{\partial^{2} f(x, y)=x^{2} \cdot e^{x y} \quad ; \frac{\partial^{2} f}{\partial y^{2}}(x, y)=e^{x y}+y \cdot x \cdot e^{x y} .}{\partial x y} \\
& f(0,0)=1 ; \frac{d f}{d x}(0,0)=0 ; \frac{\partial f}{\partial y}(0,0)=0 . \\
& A=\left[\begin{array}{ll}
\frac{\partial^{2} f}{\partial x^{2}}(0,0) & \frac{\partial^{2} f}{\partial x y}(0,0) \\
\frac{\partial^{2} f}{\partial y x}(0,0) & \frac{\partial^{2} f}{\partial y^{2}}(0,0)
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& H_{p}(f)(v)=Q_{A}(v)=2 h k=h k+k h ; q=(h, k) . \\
& f(x, y)=1+x y+\stackrel{\left(\|(x, y)\|^{2}\right)^{2}}{ } \text { de orden nuón pequeño que }\|(x, y)\|^{R} \text {. } \\
& e^{t}=1+t+\frac{t^{2}}{2}+o\left(t^{2}\right) \\
& e^{x y}=1+x y+\frac{(x y)^{2}}{2}+\frac{o\left(\|\left(x, y \|^{4}\right)\right.}{=R_{4}(x, y)} \text { donde } \lim _{(x, y) \rightarrow(0,0)} \frac{\left|R_{4}(x, y)\right|}{\|(x, y)\|^{4}}=0 \text {. }
\end{aligned}
$$

Notación de multi-índice para las decivados parciales:

$$
\begin{aligned}
& \alpha=\left(\alpha_{1}, \alpha_{2}, \cdots \alpha_{n}\right) \in \mathbb{N}_{0}^{n} \\
& |\alpha|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n} \\
& D f(P)=\frac{d^{||\alpha|}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \partial x_{3}^{\alpha_{3}} \cdots \partial x_{n}^{\alpha_{n}}}(P)
\end{aligned}
$$

\& $\frac{d^{S} f}{d x_{1}^{2} d x_{2}^{1} d x_{3}^{2}}(P)=D^{(2,1,2)} f(P)$
Eudruces puedo excribin Toylor así:

$$
\alpha!=\alpha_{1}!\alpha_{2}!\alpha_{3}!\cdots \alpha_{n}!; v^{n}=v_{1}^{\alpha_{i}}: v_{2}^{\phi_{2}} \cdots v_{n}^{\alpha_{n}} ; \alpha \in \mathbb{N}_{0}^{n}
$$

sifes $C^{k}: f(P+v)=\sum_{|\alpha|<k} \frac{D^{\alpha} f(P)}{\alpha!} \cdot v^{\alpha}+R_{k}(v) ;$ donde $\lim _{v \rightarrow 0} \frac{\left|R_{k}\right|}{\|v\|^{k}}=0$.
Si $f \in C^{k+1}: R_{k}(x)=\sum_{|\alpha|=\mid=11} D^{\alpha} f(e) v^{\alpha} ; \quad C=P+\theta v$

$$
\theta \in(0,1)
$$

Ejemple: $f(x, y, z)$.

$$
\begin{aligned}
& n=3 ; \quad|\alpha|=0 . \quad \alpha=(0,0,0) ; \quad D^{\alpha} f(p)=f(P) \\
& \text { K=2; }|\alpha|=1 \quad \begin{cases}\alpha=(1,0,0) & D^{\alpha} f(p)=\frac{\partial f}{\partial x}(p) \\
\alpha=(0,1,0) & D^{\alpha} f(p)=\frac{\partial f}{\partial y}(P) \\
\alpha=(0,0,1) & D^{\alpha} f(p)=\frac{\partial f}{\partial z}(P)\end{cases} \\
& |\alpha|=2: \quad \alpha=(2,0,0) \longrightarrow D^{\alpha} f(x)=\frac{\partial^{2} f}{\partial x^{2}}(p) \longrightarrow \alpha^{\alpha}=h^{2} \text {. } \\
& \alpha=(0,2,0) \longrightarrow \frac{\partial^{2} f}{\partial y^{2}} \\
& \alpha!=2!=2 \\
& \alpha=(0,0,2) \longrightarrow \frac{d^{2} f}{d z^{2}} . \\
& \left.\begin{array}{l}
\alpha=(1,1,0) \rightarrow \frac{\partial^{2} f}{\partial x y} \\
\alpha=(1,0,1) \rightarrow \frac{\partial^{2} f}{\partial x z} \\
\alpha=(0,1,1) \rightarrow \frac{\partial^{2} f}{\partial y z}
\end{array}\right] \alpha!=1!\quad v^{\alpha}=h^{1} k^{1} l^{0}=h k . \\
& p=(x, y, z): \\
& f(x+h, y+k, z+l)=f(P)+\left[\frac{\partial f}{\partial x}(P) h+\frac{\partial f}{\partial y}(P) k+\frac{\partial f}{\partial z}(P) l\right]+ \\
& +\left[\frac{1}{2} \frac{\left.\left.\left.\partial^{2} f(P) h^{2}+\frac{1}{\partial x^{2}} \frac{\partial^{2} f}{\partial y^{2}}(P) k^{2}+\frac{1}{2} \frac{\partial^{2} f}{\partial z^{2}}(P) \ell+\frac{\partial^{2} f}{\partial x y}(p) h k+\frac{\partial^{2} f}{\partial x z}(P) h \ell+\frac{\partial^{2} f}{\partial x z}(P) k \ell\right]\right],\right]}{\partial z}\right. \\
& +R_{2}(x, y, z)
\end{aligned}
$$

Acáya no entendí una goma. Revisar.

REPASO
Def: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, P \in \mathbb{R}^{n}$; fes difecenciable en $P \Longleftrightarrow$ existe una tcansformación
Lineal $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ tal que $f(x)=f(P)+T(x-p)+R(x)$.
donde $\frac{|R(x)|}{\|x-P\|} \longrightarrow 0$ cuardo $x \rightarrow P$.
En este caso Tes únicary se hiota $D f(P)$ (difecencial de feu P)

- Coín se acota una hausformación lineal?

$$
\begin{aligned}
A & =[T], A=\left(a_{i j}\right), \\
\text { Def: }\|A\| & T(x)=\sqrt{\sum_{i=1}^{m} \sum_{=1}^{n} a_{i j}^{2}}, \quad \varepsilon j:\left\|\left(\begin{array}{l}
1 \\
3
\end{array} 4\right)\right\|=\sqrt{1^{2}+2^{2}+3^{2}+4^{2}}
\end{aligned}
$$

Lema Si $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ es una transformación lineal y $A=[T]$ es la matriz de Ten la base cauśnica, entonces

$$
\|T(x)\|=\|A \cdot x\| \leqslant\|A\| \cdot\|x\| \quad \forall x \in \mathbb{R}^{h}
$$

Dem:

$$
A \cdot x=\left(\begin{array}{c}
A_{1} \\
A_{2} \\
A_{m}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) ; \quad(A \cdot x)_{i}=\left\langle A_{i}, x\right\rangle ; \quad ; \begin{aligned}
& \left|(A x)_{i}\right| \leq\left\|A_{i}\right\| \cdot\|x\| \\
& \text { Por la desigualdad de Cachy-Schue c3 }
\end{aligned}
$$

doude $A_{i}=\left(a_{i 1} a_{i 2} \ldots a_{i n}\right)$ la i-ésima fila de A.

$$
\begin{aligned}
& \begin{aligned}
\|A \cdot x\|^{2}=\sum_{i=1}^{m}(A \cdot x)_{i}^{2} & \leqslant \sum_{i=1}^{m}\left(\left\|A_{i}\right\| \cdot\|x\|\right)^{2} \\
& =\|x\|^{2} \sum_{i=1}^{m}\left\|A_{i}\right\|^{2} \\
& =\|x\|^{2} \cdot\|A\|^{2} .
\end{aligned}
\end{aligned}
$$

$$
\Rightarrow\|A \cdot x\| \leqslant\|A\| \cdot\|x\|
$$

Sif es diferenciable en p y $A=D f(P)$:

$$
\begin{aligned}
& \|f(x)-f(p)\|=\|A \cdot(x-p)+R(x)\| \leqslant\|A \cdot(x-p)\|+\|R(x)\| \\
& \leqslant\|A\|-\|x-P\|+\varepsilon\|x-P\| \text { si }\|x-P\|<\delta(\varepsilon) \\
& \left.\begin{array}{|l|l}
\substack{\|R(x)\| \\
\mathcal{s i}\|x-P\|} & \| \delta(\varepsilon)
\end{array}\right\}\{f(x)-f(P)\|\leqslant(\|A\|+\varepsilon) \cdot\| x-P \| \text { si }\|x-P\|<\delta(\varepsilon)
\end{aligned}
$$

En particular,
f difereuciable en $p \Rightarrow$ fontinua en P.

Regla de la cadena:

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k} ; h=g \circ f ; h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k} ; h=g(f(x))
$$

sif es diferenciable en $p \in \mathbb{R}^{n} y g$ es diferenciable en $q=f(P) \in \mathbb{R}^{m}$ eutonces hes diterenciable en P y $D h(P)=D_{g}(q) \circ D f(p)$

$$
[\operatorname{Dh}(P)]=[\operatorname{Dg}(q)] \cdot[D f(P)]
$$

Dem: Sabemos que f es diferenciable en $P \Rightarrow f(x)=f(P)+T(x-P)+R_{1}(x)$ donde $T=D f(P)$ y $\frac{\left\|R_{1}(x)\right\|}{\|x-P\|} \rightarrow 0$ cuando $x \rightarrow P$. y que g es diferenciable en $q \Rightarrow g(y)=g(q)+S(y-q)+R_{2}(y)$. goude $S=\operatorname{Dg}(q)$ y $\frac{\left\|R_{2}(x)\right\|}{\|y-q\|} \rightarrow 0$ cuaudo $y \rightarrow q \Rightarrow \frac{\left\|R_{2}(f(x))\right\|}{\|f(x)-q\|} \rightarrow 0$

$$
\rightarrow h(x)=g(f(x))=h(p)+s(f(x)-q)+R_{2}(f(x))
$$

Sustituyo: (0 jo: useurvariables distiatas para $f y g$).

$$
\begin{aligned}
h(x) & =h(p)+S\left(T(x-P)+R_{1}(x)\right)+R_{2}(f(x)) \\
& =h(p)+S(T(x-P))+S\left(R_{1}(x)\right)+R_{2}(f(x)),
\end{aligned} \quad \begin{array}{ll}
\text { difanenciable, eos eon es en } \\
& =h(p)+(S o T)(x-P)+R(x)
\end{array} \quad \Longrightarrow \text { Cuando } x \rightarrow p, y=f(x) \rightarrow q .
$$

- Si probanuos que $\frac{\|R(x)\|}{\|x-P\|} \rightarrow 0$ cuando $x \rightarrow P$, eoto diría que hes difereuciable en Py Dh $(P)=$ SoT, que es to que dice el enunciado.

Recordamos que $R(x)=S\left(R_{1}(x)\right)+R_{2}(f(x))$

$$
\begin{aligned}
& \frac{\|R(x)\|}{\|x-P\|} \leqslant \frac{\left\|S\left(R_{1}(x)\right)\right\|}{\|x-P\|}+\frac{\left\|R_{2}(f(x))\right\|}{\|x-P\|} \\
& \leqslant \underbrace{\left(\| x-\frac{\left\|R_{1}(x)\right\|}{\|x-p\|}\right.}_{\text {sill }\|x-P\|\left\langle\delta_{1}=\delta_{1}\left(\varepsilon_{1}\right)\right.}+\frac{\| R_{2}(f(x) \|}{\|x-P\|} \cdot \frac{\|f(x)-q\|}{\|x-p\|} \\
& \text { Puedo toman } \varepsilon_{1}=1 \text {; si } f(x)=q \Rightarrow R_{2}(f(x))=0
\end{aligned}
$$

Por lo cuouto que hicimos autes $\frac{\|f(x)-q\|}{\|x-p\|} \leq\|T\|+\varepsilon_{2}$ s: $\|x-p\|<\delta_{2}(\varepsilon)$

$$
\begin{aligned}
& \frac{\left|R_{1}(x)\right|}{\|x-P\|}<\frac{\varepsilon}{2\left(\|s\|+\varepsilon_{1}\right)} \text { si }\|x-P\|<\widetilde{\delta_{1}}(\varepsilon) \\
& \frac{\| R_{2}(f(x) \|}{\|f(x)-\xi\|}<\frac{\varepsilon}{2\left(\|T\|+\varepsilon_{2}\right)} \text { si }\|x-p\|<\tilde{\delta_{2}}(\varepsilon) \\
& \Rightarrow \frac{\|R(x)\|}{\|x-p\|} \leq \frac{\varepsilon}{2\left(i s \|+\varepsilon_{1}\right)} \cdot\left(\|s\|+\varepsilon_{1}\right)+\frac{\varepsilon}{2\left(\|T\|+\varepsilon_{2}\right)}\left(\|T\|+\varepsilon_{2}\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon . \\
& \quad \text { si }\|x-p\|<\min \left(\delta_{1}, \delta_{2}, \tilde{\delta}_{1}, \tilde{\delta}_{2}\right) \text {. }
\end{aligned}
$$

\Rightarrow esdo no suelen tomarlo en los finales perque es un bafór.
Feoremas en \mathbb{R}^{n} (Bolzano, Lagrange, Fermat)
Def: f: $\mathbb{R}^{n} \rightarrow \mathbb{R} ; \alpha: \mathbb{R} \rightarrow \mathbb{R}^{n}$. Si α es difereuciable ar t y fes difereuciable en $\alpha(t) \Rightarrow f \circ \alpha$ es diferenciable en t y vale:

$$
\begin{aligned}
(f \circ \alpha)^{\prime}(t) & =D_{f}(\alpha(t)) \cdot\left(\alpha^{\prime}(t)\right) \\
& =\left\langle\nabla f(\alpha(t)), \alpha^{\prime}(t)\right\rangle
\end{aligned}
$$

Ejeuplo: $p, q \in \mathbb{R}^{n} . \quad \alpha(t)=(1-t) \cdot p+t q, t \in[0,1]$. (aurva coms Aayectoria)

$\operatorname{In}(\alpha)=[p, q] \quad$ (cuna como hibjo)

$$
\beta(t)=\left(1-t^{2}\right) p+t^{2} q, t \in[0,1], \quad \operatorname{Im}(\beta)=[P, q]
$$

Def: $\Omega \subseteq \mathbb{R}_{1}^{n} \Omega$ sedice onco-conexo (covexo por arcos) si para todo pen depuntos pq Ω existe una curva continua en Ω quo lor une.

$$
(\forall p, q \in \Omega \nexists \alpha:[0,1] \rightarrow \Omega \text { talque } \alpha(0)=p \text { continua } \alpha(1)=q)
$$

Si

No

Si: una bola es

Def: $\Omega \subseteq \mathbb{R}^{n}$ en conviexo si $\forall p, q \in \Omega$ el segmento $[p, q]=\left\{x \in \mathbb{R}^{n} / x=(1-t) p+\operatorname{tq}\right.$ con $\left.t \in[0,1]\right\} \subseteq \Omega$.
obs: Ω convext $\Rightarrow \Omega$ acco-conext.

no ES CONVEXO

convexd

Eemplo: Cualquier bola abientar en \mathbb{R}^{n} es un convexo

$$
B=B\left(x_{0}, r\right)=\left\{x \in \mathbb{R}^{n} /\left\|x-x_{0}\right\|<r\right\}
$$

Sean $p, q \in B$ quierocvar $[p, q] \subset B$

Sea $x \in[P, q] \Rightarrow x=(1-t) p+t q$ paroolgúm $t \in[0,1]$
quiero ver que $x \in B$

$$
\begin{aligned}
&\left\|x-x_{0}\right\|=\left\|[(1-t) p+t q]-\left[(1-t) x_{0}+t x_{0}\right]\right\| \\
&=\left\|(1-t)\left[p-x_{0}\right]+t\left[q-x_{0}\right]\right\| \\
& \leqslant\left\|(1-t)\left(p-x_{0}\right)\right\|+\left\|t\left(q-x_{0}\right)\right\| \leq(1-t)\left\|p-x_{0}\right\|+t\left\|q-x_{0}\right\| \\
&<(1-t) r+t r=r .
\end{aligned}
$$

* teorema de bolzano en \mathbb{R}^{n}

Sea $\Omega \subseteq \mathbb{R}^{n}, f: \Omega \rightarrow \mathbb{R}$ continua
si Ω es arco-conexo, $p, q \in \Omega, f(p)>0, f(q)<0$
\Rightarrow existe alguí $x_{0} \in \Omega / f\left(x_{0}\right)=0$

$\mathcal{L} \Omega$ so Convexo: $X_{0} \in[p, q]$.
Dem: Couv Ω es anco-Conexe $\Rightarrow \exists \alpha[0,1] \rightarrow \Omega$ contiaura. $\alpha(0)=p$ y $\alpha(1)=q$. sea $g=f \circ \alpha, g:[0,1] \rightarrow \mathbb{R}$. ges coutianapor la couposición de funciones

$$
\left.\begin{array}{l}
g(0)=f(p)>0 \\
g(1)=f(q)<0
\end{array}\right\} \text { Por Bolzans en } \mathbb{R} \rightarrow \exists t_{0} \in[0,1] / g\left(t_{0}\right)=0 \text {. }
$$

Siel Ω es convexa predo elgin α somo $\alpha(t)=(1-t) p+t q, \quad t \in[0,1]$.

$$
\Rightarrow x_{0} \in[p, q]
$$

* teorema de lagrange en \mathbb{R}^{n}. (ojo: Solo nale $p /$ funcianes con valores eu \mathbb{R}).
 sir en coovexo vale $\forall p$ pager entonces $\exists X_{0} \in(P, q) / X_{0}=\left(1-t_{0}\right) P+t_{0}$ Paraafuén $t_{0} \in(0,1)$ tal que $f(p)-f(q)=\left\langle\nabla f\left(x_{0}\right), q-p\right\rangle$

Dem (Logrange) : Sea $\alpha(t)=(1-t) p+t q, g=f \circ \alpha:[0,1] \rightarrow \mathbb{R}$.
$\Rightarrow g e s$ derivable en $(0,1)$ y Rontinus en $[0,1]$.

$$
\begin{array}{rlrl}
g^{\prime}(t) & =\left\langle\nabla f(\alpha(t)), \alpha^{\prime}(t)\right\rangle & & \text { por la negla } \\
& =\langle\nabla f(\alpha(t)), q-p\rangle & \text { dela caderna }
\end{array}
$$

Par el teerema de lagrange en una variable $\exists t_{0} \in(0,1): \frac{g(1)-g(0)}{1-0}=g^{\prime}\left(t_{0}\right)$

$$
\begin{aligned}
& \left.\begin{array}{l}
g(1)=f(q) \\
g(0)=f(p) \\
\text { sea } x_{0}=\alpha\left(t_{0}\right)
\end{array}\right\} \quad f(q)-f(p)=\left\langle\nabla f\left(\alpha\left(t_{0}\right)\right), q-p\right\rangle \\
& =\left\langle\nabla f\left(x_{0}\right), q-p\right\rangle
\end{aligned}
$$

Def: $f: \Omega \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}, p \in \Omega$.

- f tieve eu P un mínimo local (orelatives) si $\exists r>0 / f(P) \leqslant f(x) \forall x \in \Omega \operatorname{con}\|x-p\|_{<}<r$
- Ftiene en Pun méximolocel (o celativs) si $\exists r>0 / f(P) \geqslant f(x) \forall x \in \Omega$ eon $\|x-P\|<r$
- Sipes un máxinuo o minimuo local sellama un extcemo local.

TEOREMA DE FERTAT ENR ${ }^{n}$

$$
f: \Omega \leq \mathbb{R}^{n} \rightarrow \mathbb{R}, P \in \Omega^{0} \text { (pen el cuterior de } \Omega \text {) }
$$

- Siftienceu P un extemo local or f es diferenciable en P eutonces

$$
\nabla f(p)=0 ; \quad \frac{\partial f}{\partial x_{i}}(p)=0 \quad \forall i
$$

- Si ftieue en P un exhema lacal y \exists la decivada dinecciónal $\frac{d f}{d v}(P)$ en la dirección de algún $\|v\|=1 \Longrightarrow \frac{d f}{d v}(p)=0$.
Dem: Sea $\alpha(t) \equiv p+t r$; sea $g=$ foo $\alpha \xrightarrow{P r}$
Siftiene an Míniano locabin $p: \quad g:(-r, r) \rightarrow \mathbb{R}$.

$$
\begin{aligned}
g(0)=f(p) \leqslant f(\alpha(t))=g(t), \forall t \in(-r, r) & (\Longrightarrow \alpha(t) \in B(P, r) \text { pues }\|\alpha(t)-P\| \\
\Rightarrow g \text { tiene en } t=0 \mathrm{~cm} \text { Auinimo local. } & =|t| \cdot \frac{\|v\|}{1}<r
\end{aligned}
$$

(siftience en par máxus bcal gtiene ent=0 un máxinuo local)

$$
0=g^{\prime}(0)=\frac{\partial f}{\partial v}(P) \text {. }
$$

Poffermoten 1 vor.
Eu particular, sif es difereuciable en $P \Rightarrow$ todas las deriradas dincciouales existen $y \frac{\partial f}{\partial v}(p)=0$.
Eligiendev $=e_{j}: \frac{\partial f}{\partial x_{j}}(P)=0 \forall j \Rightarrow \nabla f(P)=0$.

Ejercici: Sea $Q=\left\{(x, y) \in \mathbb{R}^{2} /|x| \leq 1,|y| \leq 1\right\}, f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ de clase $C^{1}, P=(1,0)$ de final \rightarrow Supongames que $f / Q\left(\begin{array}{l}\text { reshirjida } \\ \text { a } Q\end{array}\right.$) denga un nuaxinuo absoluto

$$
\Rightarrow f(p) \geqslant f(x) \quad \forall x \in Q
$$

1) Proban que $\frac{\partial f}{\partial y}(P)=0$
2) Probon que $\frac{\partial f}{\partial x}(P) \geqslant 0$
iii) ¿'Se puede afimuan que $\frac{\partial f}{d x}(P)=0$? No

$$
p \in \partial \Omega \text {. }
$$

ii1) $f(x, y)=x$ cmupleque $f(p)=1\rangle f(x, y) \quad \forall(x, y) \in Q$. $\frac{\partial f}{\partial x}(x, y)=1 \neq 0 . \Rightarrow$ Conhaeyemplo.
$v=(a 1)$

$$
g(t)=f(p+t v)=f(0,1+t), \quad g^{\prime}(0)=\frac{\partial f}{\partial y}(0,1)
$$

$(0,1) \in Q \forall t e o n|t|<1$.
$f(0,1+t) \leqslant f(0,1) \quad \forall t$ con $|t|<1$
$g(t) \leqslant g(0) t \cos |t|<1$.
gtieve un duáxinua en $0 \in(-1,1) \stackrel{\text { porfermaten }}{\stackrel{1 u n}{\longrightarrow}} \mathrm{~g}(0)=0 \rightarrow \frac{\partial f}{\partial y}(1,0)=0$.

$$
\begin{aligned}
& \frac{d f}{\partial x}(0,1)=\lim _{t \rightarrow 0} \frac{f(1, t)-f(0,1)}{t} \\
& v=(1,0)=\frac{11+1 t \leq 1}{} \\
& g(t)=f(p+t v)=f(1+t, 0), t \in[-2,0] \\
& g(t) \leq g(0), g:[-2,0] \rightarrow \mathbb{R} \\
& \frac{\partial f}{\partial x}(1,0)=g^{\prime}(0)=\lim _{2} \frac{g(t)-g(0)}{t} \\
& \text { sit } t \in[-2,0) \quad g(t)-g(0) \leq 0 \\
& t<0: g(t)-g(0) \geqslant 0 \Rightarrow \lim _{t \rightarrow 0} \frac{g(t)-g(0)}{t} \geqslant 0
\end{aligned}
$$

No entendí una goma.

Ejecicio ¿Quépasaría si $\tilde{Q}=\left\{(x, y) \in \mathbb{R}^{2} / x^{2}+y^{2} \leq 1\right\}$?

EXTREMOS
$f: \mathbb{R} \rightarrow \mathbb{R}$
Si * es un extema local
de $f \Rightarrow f^{\prime \prime}\left(x_{0}\right)=0$

$$
f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)\left(\left(x-x_{0}\right)\right.}{s^{\prime} f^{\prime}\left(x_{0}\right)=0}+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}+R_{2}(x)
$$

TEOREMA: Sea $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ de clase $C_{1}^{2}, x_{0} \in I$ t tal que $f^{\prime}\left(x_{0}\right)=0$:
(1) si $f^{\prime \prime}\left(x_{0}\right)>0 \Rightarrow x_{0}$ es un nuinaimo local estricto.
(exiote $\delta>0$ tal que $f(x)>f\left(x_{0}\right)$ si $0<\left|x-x_{d}\right|<\delta$)
Condiciones suficientes
(2) $\mathcal{L} f^{\prime \prime}\left(x_{0}\right)<0 \Rightarrow$ Xees un maximo local estricto.
(exiote $\delta>0$ tal que $f(x)<f\left(x_{0}\right)$ si $\left.0<\left|x-x_{0}\right|<\delta\right)$]
(3) Aiftime en x_{0} un minimo local $\Longrightarrow f^{\prime \prime}\left(x_{0}\right) \geqslant 0$
(4) AI f tiene en X_{0} unmaximolocal $\Longrightarrow P^{\prime \prime}\left(x_{0}\right) \leq 0$
condiciones necesorias.

Dem (1) Escribinus el Toyfor de erden 1 con resto de lagrauge.

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}(c)}{2}\left(x-x_{0}\right)^{2} \text { donde } c \in\left(x_{0}, x\right), c=c(x)
$$

Como f es $c^{2} \Rightarrow f^{\prime \prime}$ es contimina $\Rightarrow \operatorname{como} f^{\prime \prime}\left(x_{0}\right)>0$, existe $\delta>0$ talque Si $\left|y-x_{0}\right|<\delta$ entences $f^{\prime \prime}(y)>0$.
Usamo esto con $y=c(x) \Rightarrow f(x)>f\left(x_{0}\right) \forall x \operatorname{con} 0<\left|x-x_{0}\right|<\delta$
(2) Es símilar.
(3) y (4) salen de (1)y (2)

Ef: Dem de (3): Si ho fuera $f^{\prime \prime}\left(x_{0}\right) \geqslant 0 \Rightarrow f^{\prime \prime}\left(x_{0}\right)<0 \Rightarrow$ por (2) Xo sería un máxuno local es hicto $\Rightarrow X_{0}$ no seria an muinimo local. A
Écuppo: $f(x)=x^{3}, x_{0}=0, f^{\prime}(x)=3 x^{2}, f^{\prime \prime}(x)=6 x$,
$f^{\prime}\left(x_{0}\right)=0$, ho es hiáxinuo himimimo local de hecho f es eshictormente ereciente.
(iu (3) I(4) novale la vuelfa)

Egemplo: $f(x)=x^{4}, x_{0}=0 . f^{\prime}(x)=4 x^{3} ; f^{\prime \prime}(x)=12 x^{2}$

$$
f^{\prime}\left(x_{0}\right)=0, f^{\prime \prime}\left(x_{0}\right)=0
$$

Xo $=0$ exm uninime local (Y global) estricto
(en (1) y (2) no vale la cruelta)
Recordamos émo es el desarrollo de taylor de una función $f: \mathbb{R}^{n} \rightarrow R$ de clase C^{2} :

$$
f(x)=f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle+\frac{1}{2} H x_{0} f\left(x-x_{0}\right)+R_{2}(x)
$$

donde $H_{x} f(r)=\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{d^{2} f}{d x_{i} x_{j}}\left(x_{0}\right) v_{i} v_{j} \Rightarrow$ Hessiano defen x_{0}.

$$
\begin{aligned}
& \lim _{x \rightarrow x_{0}} \frac{|R(x)|=0}{\left\|x-x_{0}\right\|}=0 \\
& L n=2: H x_{x_{0}} f(v)=\frac{\partial^{2} f}{\partial x_{1}^{2}}(x)\left\{v_{1}^{2}+2 \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}\left(x_{0}\right) v_{1} v_{2}+\frac{\partial^{2} f}{\partial x_{2}^{2}}\left(x_{0}\right) v_{2}^{2}\right.
\end{aligned}
$$

-Aif tiene en x_{0} un extemo local $\Rightarrow \nabla f\left(x_{0}\right)=0$
Clasificación de las formas cuadráticas de acuerdo all signo.

$$
\begin{aligned}
& A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n} \text { sinaitica: } a_{i j}=a_{j i} \\
& Q_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R} ; Q_{A}(v)=\langle A v, v\rangle=v^{-6} \cdot A \cdot v=\sum_{i, j=1}^{n} a_{i j} v_{i} v_{j} \\
& n=2: A=\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right), Q_{A}(x, y)=a x^{2}+2 c x y+b y^{2} \\
& Q_{A}(\overrightarrow{0})=0
\end{aligned}
$$

Def (1) A QA sedicen definidas positiva si $Q_{A}(v) \geqslant 0 \forall v \in \mathbb{R}^{n}, v \neq \overrightarrow{0}$

$$
\text { ef: } \begin{aligned}
Q_{A}(x, y) & =2 x^{2}+3 y^{2} \quad A=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) \\
Q_{A}(x, y, z) & =x^{2}+8 y^{2}+5 z^{2}, \quad A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 5
\end{array}\right) \\
Q_{A}(x, y) & =3 x^{2}+3 y^{2}-2 x y \\
& =\frac{(4 x-y)^{2}+2 x^{2}+2 y^{2}}{x^{2}-2 x y+y^{2}} \quad A=\left(\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right)
\end{aligned}
$$

(2) $Q_{A} \circ A$ son definidas negativas si $Q_{A}(v)<0 \quad \forall v \in \mathbb{R}_{n}, v \neq \overrightarrow{0}$ ey: $Q_{A}(x, y)=-x^{2}-y^{2}, \quad A=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$
(3) $Q_{A} \circ A$ sedice semi-definida positiva si $Q_{A}(v) \geqslant 0 \forall v \in \mathbb{R}^{n}$ pero existealgain $v_{0} \neq \overrightarrow{0} / Q_{A}\left(v_{0}\right)=0$

$$
\begin{aligned}
y= & Q_{A}(x, y)=x^{2}+y^{2}-2 x y=(x-y)^{2} ; A=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) ; v_{0}=\binom{1}{1} \\
& Q_{A}\left(v_{0}\right)=0 \\
y= & Q_{A}(x, y)=x^{2}+y^{2}+2 x y=(x+y)^{2}, A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
& Q_{A}(1,-1)=0
\end{aligned}
$$

(4) $A_{0} Q_{A}$ es semi-definida negativa si $Q_{A}(v) \leqslant 0 \forall v \in \mathbb{R}_{3}^{n}$ pero expote alginn $v_{0} \in \mathbb{R}^{n} / Q_{A}\left(-V_{0}^{*}\right)=0$

$$
\begin{aligned}
\xi_{y} Q_{A}(x, y) & =-x^{2} \quad A=\left(\begin{array}{rr}
-1 & 0 \\
0 & 0
\end{array}\right), N_{0}=\binom{0}{1} \\
Q_{A}\left(v_{0}\right) & =0
\end{aligned}
$$

(5) $A_{0} Q_{A}$ sedicen indefinidas si $\exists v_{0}, v_{1} \in \mathbb{R}^{n}, v_{0} \neq \overrightarrow{0}, v_{1} \neq \overrightarrow{0}$ talas que $Q_{A}\left(v_{0}\right)>0$ of $Q_{A}\left(v_{1}\right)<0$

$$
\begin{array}{cc}
\text { If: } Q_{A}(x, y)=x y, & A=\left(\begin{array}{ll}
0 & 1 / 2 \\
1 / 2 & 0
\end{array}\right) \quad v_{0}=(), v_{1}=() \\
Q_{n}\left(v_{0}\right)= & , Q_{a}\left(v_{1}\right)
\end{array}
$$

$Q_{A}(x, y)=a x^{2}+2 c x y+b y^{2}, \quad A=\binom{a c}{c b}, \quad \Delta=\operatorname{det}(A)=a b-c^{2}$
Si $a \neq 0$:

$$
\begin{array}{rlr}
Q_{A}(x, y) & =a\left[x^{2}+\frac{2 c}{a} x y+\frac{b}{a} y^{2}\right] & a=Q(1,0) \\
& =a\left[\left(x+\frac{c}{a} y\right)^{2}-\frac{c^{2} y^{2}}{a^{2}}+\frac{b}{a} y^{2}\right] & b=Q(0,1) \\
& =a\left[\left(x+\frac{c}{a} y\right)^{2}+\frac{a b-c^{2}}{a^{2}} y^{2}\right] & \\
\operatorname{det}(-A) & =(-1)^{n} \operatorname{det}(A) &
\end{array}
$$

IEREMA: $A=\left(\begin{array}{ll}a & c \\ c & b\end{array}\right)$ ema Miathiz simuétrica de $2 \times 2 ; \Delta=\operatorname{det}(A)=a b-c^{2}$
(1) $a>0$ y $\Delta>0 \Leftrightarrow Q_{A}(0 A)$ es definida positiva.
(2) $a<0 \gamma \Delta>0 \Leftrightarrow Q_{A}(0 A)$ es definida negativa.
$a \neq 0$ y $a<0 \Rightarrow A$ es undefinida $(\operatorname{en} 2 \times 2)$.
obs. Si $a=0 \Longrightarrow Q(1,0)=0$.

Def un confunto $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ en \mathbb{R}^{n} se dice una base octonormal si
(1) $\left\|v_{j}\right\|=1 \quad \forall j$

$$
\begin{aligned}
& \text { (2) } \begin{aligned}
\left\langle v_{i}, v_{j}\right\rangle \\
v_{i} i v_{j}
\end{aligned} \\
& P=\left(\begin{array}{l}
v_{1} v_{2} \ldots v_{n}
\end{array}\right) \in \mathbb{R}^{n \times n} \\
& P^{t}=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{n}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P^{l}=\binom{v_{2}}{v_{n}} \\
& P^{t}-P=I=\left(\begin{array}{lll}
10 & 0 \\
01 & 0 \\
0 & 1
\end{array}\right) \quad \text { og: } P=\left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)
\end{aligned}
$$

Tearema: Sea $A \in \mathbb{R}^{n \times n}$ simuética. Eutonces existe una base ortonommal de autovectores $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ de \mathbb{R}^{n} fomada por autovectores de A

$$
\begin{aligned}
& A v_{j}=\lambda_{j} v_{j}\left(\lambda_{j} \in A\right) \\
& \begin{aligned}
& P=\left(v_{1} v_{2} \ldots v_{n}\right) \quad P^{t} A P \\
& P^{-1} A P=D=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{n}
\end{array}\right) \\
& \Rightarrow A=P D P^{t} \\
&=\left(P^{t} v\right)^{t} D\left(P^{t} v\right)=Q_{D}\left(P^{t} v\right)
\end{aligned} \\
& \begin{aligned}
Q_{A}(v)=v^{t} A \cdot v=v^{t}\left(P D P^{t}\right) v^{2} \\
Q_{D}(v)=\lambda_{1} v_{1}^{2}+\lambda_{2} v_{2}^{2}+\cdots+\lambda_{n} v_{n}^{2}
\end{aligned}
\end{aligned}
$$

Q_{A} es definida positiva \Leftrightarrow Qoesdefinidapositiva $\Leftrightarrow \lambda_{k}>0 \forall K$
Q_{A} es definidanegativa $\Leftrightarrow Q_{\text {Des de finida negativa }} \Leftrightarrow \lambda_{k}<0 \forall k$

Eumplo: $Q_{A}(x, 4)=2 x y, A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

$$
X_{A}(\lambda)=\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\begin{array}{cc}
\lambda & -1 \\
-1 & \lambda
\end{array}\right)=\lambda^{2}-1 \Rightarrow\left\{\begin{array}{l}
\lambda_{1}=1 \\
\lambda_{2}=-1
\end{array}\right.
$$

$A \cdot v=\lambda v, v=\binom{x}{y}$
Si $\lambda=1:\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{x}{y}=\binom{x}{y} \quad ; \quad\binom{y}{x}=\binom{x}{y} \Rightarrow x=y$.
Si $\lambda=-1 \quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{x}{y}=\binom{-x}{-y} \quad ; \quad y=-x$.

$$
\begin{aligned}
P=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) \quad\binom{u}{v}=P^{t}\binom{x}{y} \quad\binom{x}{y}=P\binom{\mu}{v} \\
x=\frac{\mu-v}{\sqrt{2}}, \quad y=\frac{\mu+v}{\sqrt{2}} \\
2 x y=2\left(\frac{\mu-v}{\sqrt{2}}\right)\left(\frac{\mu+v}{\sqrt{2}}\right)=(\mu-v)(\mu+v)=\mu^{2}-v^{2}=1 \cdot \mu^{2}+(-1) v^{2} .
\end{aligned}
$$

$\Rightarrow Q_{A}$ es definida lugatica.

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{32}
\end{array} & a_{23}
\end{array}\right) \quad \text { Asdefinidaporitiana } \Leftrightarrow a_{11}>01 \operatorname{det}\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)>01 \operatorname{det}(A)>0 \\
& a_{i j}=a_{j i} \quad \text { Asdef thegatina } \Leftrightarrow a_{11}<0 \wedge \operatorname{det}\left(\begin{array}{ll}
a_{1} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)>0 \wedge \operatorname{det}(A)<0 .
\end{aligned}
$$

Condiciones ne ce sarias pare tener unextremo:
TEOREMA: $f: \Omega \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$; de clase $C^{2} p \in \Omega^{0} ; \nabla f(p)=0$ (pescu puntocrítio).

$$
H_{p} f=Q_{A}: \quad A=\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(P)\right) \in \mathbb{R}^{n_{x n}}
$$

(1) Si Pesun mínimuo local de $f \Rightarrow H_{p} f(v) \geqslant 0 \quad \forall v \in \mathbb{R}^{n}$
($H_{p}(f)$ es definido poritino o semidefinido porition).
(2) Si Pes un máxinus local de $f \Rightarrow H_{p} f(v) \leqslant 0 \forall v \in \mathbb{R}^{n}$ ($H_{p}(t)$ es definido hegation osemidefinido Regadino).
Dem(1) Suponenos P an Luíniaus local def $(\exists r>0 / f(p) \leqslant f(x) \forall x \in B(P, r))$ dado $\forall \in \mathbb{R}^{n}$ puedo souponen $\|v\|=1$ av v otiene horna 1 exnibo:

$$
g(t)=f(p+t w), \quad g(-r, r) \rightarrow \mathbb{R}
$$

g tieve en $t=0$ an minimolocal.

$$
\begin{aligned}
& Q_{A}(v)=\|v\|^{2}=Q_{A}(\tilde{v}) \\
& (\|\tilde{v}\|=1) \tilde{v}=\frac{v}{\|v\|}
\end{aligned}
$$

$$
\begin{aligned}
& g^{\prime}(t)=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(p+t v) v_{i} \\
& g^{\prime \prime}(t)=\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(p+t \Delta v) v_{i} v_{j} \\
& g^{\prime \prime}(v)=\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(P) v_{i} v_{j}=H_{p} f(v) .
\end{aligned}
$$

g tieve an Aninimuo local en $t=0 \Rightarrow g^{\prime \prime}(0) \geqslant 0$. (Por el forrma en

$$
H_{p} f(v) \geqslant 0
$$

(2) Sale cgual (a ambio \leqslant por \geqslant)

Def: un pueto Pcriticodef $(\nabla f(P)=0)$ se dice pundo de ensilladura sina es un extemo local.

Corolario: Si poscupunto crítica de $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ de dase C^{2} y Hpf es undefinids
\Rightarrow Pesun punto de eusilladura
Eguplo: $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=x^{2}-y^{2}+x^{4}+y^{6}, p=(0,0)$

$$
H p f(0,0)(x, y)=\frac{1}{2}\left(x^{2}-y^{2}\right)
$$

Condiciones suficientes porateneron exhemo.
TEOREMA: $f: \Omega \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ de clase $C^{2}, p \in \Omega^{0}$. Suponemos que $\forall f(P)=0$

$$
H_{p} f=Q_{A} ; \quad A=\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(p)\right)
$$

(1) Si $H_{p} f$ es definido poritino \Rightarrow f kieve en P un amiminuo local isthicto.
(2) ss Hpfes difinido hegation \rightarrow f tiene eu P un máxinuo local eshicto

LEMA: Li Q_{A} es definida poritina $\Rightarrow \exists c>0 / Q_{A}(v) \geqslant c \cdot\|v\|^{2}$
(si Q_{A} es definida legatino $\Rightarrow Q_{A}(v) \leqslant-c\|v\|^{2}$)
Dem: $S=\left\{v \in \mathbb{R}^{n} /\|v\|=1\right\}$ s eerrado y acotads (es cun compacto)
Q_{A} os conticma \Rightarrow pon Weierstrass $\exists c>0: Q_{A}(v) \geqslant c \forall v \operatorname{con}\|v\|=1$.

$$
\operatorname{con} C=Q_{A}\left(v_{0}\right)>0, \quad v_{0} \in S
$$

sives cualquiera: $Q(v)=\|v\|^{2} Q\left(\frac{v}{\| v-1}\right) \geqslant c\|v\|^{2}$

Dem delferena: $v_{0}=x-P$

$$
f(x)=f(p)+\frac{\langle\nabla f(p), v}{v f(p)=0}+\frac{1}{2} H_{p} f(v)+R_{2}(x)
$$

Elifo $\varepsilon=\frac{c}{4} \rightarrow$ chadel lema
Sobemorque $\lim _{x \rightarrow p} \frac{\left|R_{2}(x)\right|}{\|x-P\|^{2}}=0$ fal que $\left|R_{2}(x)\right| \leqslant \varepsilon\|v\|^{2}$ existe $\delta>0$.

$$
\begin{aligned}
& \Rightarrow f(x) \geqslant f(p)+\frac{1}{2} c\|v\|^{2}-\varepsilon\|v\|^{2} ; \quad \frac{\left|R_{2}(x)\right|}{\|x-p\|}<\varepsilon \text { si }\|x-p\|<\delta . \\
& f(x) \geqslant f(p)+\left(\frac{c}{2}-\varepsilon\right)\|v\|^{2}=f(p)+\frac{c}{4}\|v\|^{2}>f(p)
\end{aligned}
$$

si $x \neq P$ y $\|x-P\|<\delta \Rightarrow$ ftieue eu P un
Míninno local eshicto.

FUnCIÓN INVERSA
Def: $f: A \longrightarrow B$ uni ${ }^{\prime}$? , sio del confurde A en B

1. fes inyectiva $\Leftrightarrow \forall x, y \in A . \quad f(x)=f(y) \Longrightarrow x=y$
$2-f$ es suryectiva $\Leftrightarrow \forall y \in B \exists x \in A / y=f(x)$
2. fes biyectiva (bi-univoca) \Leftrightarrow es ingectiva y suryectiva.

Para dodo $y \in B \exists!x \in A / f(x)=y$
Cuondo f es biyective \Rightarrow podemos definir lo función unverse $f^{-1}: B \rightarrow A$ $f^{-1}(y)=$ el único $x \in A$ falque $y=f(x)$,
Ejemplo: $f(x)=x^{2}, f: \mathbb{R} \rightarrow \mathbb{R}, f$ noes inyectiva: $f(2)=f(-2)=4$
$\Rightarrow f$ woes bifectiva \Rightarrow no tiene inversa.
Eemplo: $f(x)=x^{2}, f: \mathbb{R}_{\geqslant 0} \rightarrow \mathbb{R}_{\geq 0}$ es bigective.

$$
f^{-1}(y)=\sqrt{y} \quad ; \quad x^{2}=y \Leftrightarrow x=+\sqrt{y}
$$

obs: $f: A \rightarrow B$

$$
\begin{array}{lll}
f: A \rightarrow B & f \circ g: B \rightarrow B & f \circ g=1 d B \\
g: B \rightarrow A & g=f^{-1} \Leftrightarrow & g \circ f: A \rightarrow A
\end{array} \quad g \circ f=1 d A .
$$

donde idA: $A \rightarrow A, \quad I d_{A}(x)=x \quad \forall x \in A$.
Eyemplo

$$
\begin{aligned}
& f(x)=\operatorname{sen} x \\
& f!\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow[-1,1] \\
& f^{-1}:[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\
& f^{-1}(y)=\operatorname{arcsen}(y)
\end{aligned}
$$

$$
\rightarrow \pi \cdot \pi!\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow[-1,1]
$$

$$
\operatorname{sen}(\operatorname{arcsen} y)=y \forall y \in[-1,1]
$$

$$
\operatorname{arcsen}(\operatorname{sen} x)=x \forall x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

Teorema de la función inversa en una variable
Vessiónglobal: $f:[a, b] \rightarrow[c, d]$, f eontinva y estrictamente ereccente $(\operatorname{six} x<y \Rightarrow f(x)<f(y)$

$$
f(a)=c, \quad f(b)=d \quad\binom{a<b}{c<d}
$$

$\Rightarrow y_{i}$ es biyectiva of $f^{-1}[c, d] \rightarrow[a, b]$ es contimuna geshictamente creconte.

Obs: Se aplica a $f(x)=x^{2}, f: \mathbb{R} \geqslant 0 \rightarrow \mathbb{R} \geqslant 0$

$$
f=\operatorname{sen} x, \quad f=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow[-1,1]
$$

Dem:(1) Pes cuyectina si $x_{1}, x_{2} \in[a, b]$ con $x_{1} \neq x_{2}$
Puedo suponer $x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$ por ser f eshictaneube creccente.

$$
\Rightarrow \quad f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

(2) I es suryectiva: sea $y \in[c, d]$, puedo suponer $c \lll y<d\left(\begin{array}{l}\text { pues } f(a)=c) \\ f(a) \\ y f(b)=d\end{array}\right)$ $\tilde{f}(x)=y-f(x)$
$\tilde{f}(a)=y-c>0\}$ como $f(y$ por lotauto $\tilde{f})$ es continuia, $\tilde{f}(b)=y-d<0$.$\} puedo usas Bolzano.$

- $f(x)=y \quad$ Pr elfurema de Bolgano, existe $x_{0} \in(a, b)$ tol gw
$\Leftrightarrow 0=y-f(x) \quad \tilde{f}\left(x_{0}\right)=0 \Rightarrow f\left(x_{0}\right)=y$ luego, f es surjectina.
vimuos $\forall y \in[c, d] \exists!x_{0} / f\left(x_{0}\right)=y$
Esto defire una fueción uversas $f^{-1}:[c, d] \rightarrow[a, b]$
Queremos derque f es eshictamente creciente y contiannan.
sean $y_{1}, y_{2} \in\left[c_{1} d\right]_{1} y_{1} \neq y_{2}$ predo suporver $y_{1}<y_{2}$, ayseaur

$$
\begin{array}{ll}
y \text { sean } x_{1}, x_{2}: & x_{1}=f^{-1}\left(y_{1}\right) \Leftrightarrow y_{1}=f\left(x_{1}\right) \\
& x_{2}=f^{-1}\left(y_{2}\right) \Leftrightarrow y_{2}=f\left(x_{2}\right)
\end{array}
$$

Querencos ber que $x_{1}<x_{2}$. Noternas $x_{1} \neq x_{2}$, sea $y_{1}=y_{2}$.

Arimos que f^{-1} es estrictormeute crecrents.
Nos felta der que $f^{-1}:[c, d] \rightarrow[a, b]$ es contisua.
Sea $y_{0} \in[c, d]$ quierocrer que f^{-1} seantimua en $y_{0}, y_{0}=f\left(x_{0}\right)$ P/un unico $x_{0}=f^{-1}\left(y_{0}\right)^{\prime} \in[a, b]$
Dado $\varepsilon>0$ quierover que $\exists \delta>0 /$ si $\left|4-y_{0}\right|<\delta \Rightarrow \Rightarrow f^{\Rightarrow}\left(\frac{\left|f^{-1}(y)-\varepsilon<f^{-1}\left(y_{0}\right)\right|<\varepsilon}{}\right.$.

$$
\begin{aligned}
& \begin{array}{l}
x_{1}=\left\{\begin{array}{lll}
x_{0}-\varepsilon & \text { si } x_{0}-\varepsilon \in[a, b] \\
a & \text { si } & x_{0} \varepsilon \notin[a, b]
\end{array}\right. \\
x_{2}=\left\{\begin{array}{ccc}
x_{0}+\varepsilon & \text { si } & x_{0}+\varepsilon \in[a, b] \\
b & \text { si } & x_{0}+\varepsilon \notin[a, b] .
\end{array}\right.
\end{array} \\
& f^{-1}\left(y_{0}\right)-\varepsilon<f^{-1}(y)\left\langle f^{-1}\left(y_{0}\right)+\varepsilon\right. \\
& x_{1} \leqslant x_{0} \leqslant x_{2} \Leftrightarrow f\left(x_{1}\right) \leqslant f\left(x_{0}\right) \leqslant f\left(x_{2}\right) \\
& \begin{array}{l}
y_{1}=f\left(x_{1}\right) \\
y_{2}=f\left(x_{2}\right)
\end{array} \quad \text { si } y \in\left[y_{1}, y_{2}\right] \Rightarrow x=f^{-1}(y) \in\left[x_{2}, x_{2}\right] \Rightarrow f^{-1}\left(y_{1}\right) \leqslant f^{-1}(y) \leqslant f^{-1}\left(y_{2}\right) \\
& \mid \text { si } x=f^{-1}(y) \in\left[x_{1}, x_{2}\right] \Rightarrow\left|f^{-1}(y)-x_{0}\right|<\varepsilon \text {. }
\end{aligned}
$$

sea $\delta<\min \left(y_{0}-y_{1}, y_{2}-y_{0}\right)$, si $\left|y-y_{0}\right|<\delta \Rightarrow y \in\left(y_{1}, y_{2}\right) \xrightarrow{y_{1}\left(\frac{y_{0}}{\square}, y^{y_{2}}\right.}$.

$$
\Rightarrow x=f^{-1}(y) \in\left[x_{1}, x_{2}\right] \rightarrow\left|f^{-1}(y)-x_{0}\right|<\varepsilon
$$

Dem: Ai f es decreciente y continua $\Rightarrow-f e s$ crecrente y continua $(-f)(x)=-f(x)$. Se veduce a la Dersión auterion.
Versión local $f: I=(\alpha, B) \rightarrow \mathbb{R}$ de clase C^{\prime} (os dericrable eu I y $f^{\prime}: I \rightarrow \mathbb{R}$ es con tiama) Sea $x_{0} \in I / f^{\prime}\left(x_{0}\right) \neq 0 ; y_{0}=f\left(x_{0}\right)$.. Eutonas \exists an entomo U de x_{0} $0=\left(x_{0}-\varepsilon, x_{0}+\varepsilon\right) \subseteq I$ y un enforna $V=\left(Y_{0}+\varepsilon, y_{0}+\varepsilon\right)$ toles que $f / u: u \rightarrow v$ es biyectiva of $(f / u)^{-1}: v \rightarrow u$ es de clase c^{1}.
Dern dila derriónlocal: Porkipóteris: $f^{\prime}\left(x_{0}\right) \neq 0 \Rightarrow\left\{\begin{array}{l}f^{\prime}\left(x_{0}\right)>0 \\ f^{\prime}\left(x_{0}\right)<0\end{array}\right.$

Suponganos que $f^{\prime}\left(x_{0}\right)>0$. Como f es $c^{1} \Rightarrow f^{\prime}$ es consirnua $\rightarrow \exists \delta>0$ dal que si $x \in \bar{U}=\left[x_{0}-\delta_{1} x_{0}+\delta\right]$ entences $f^{\prime}\left(x_{0}\right)>0 \rightarrow f / v: u \rightarrow \mathbb{R}$ es estrictomerte creciente. le aplia el feovenea auteria (verrionglobal)

$$
\begin{aligned}
& a=x_{0}-\delta, b=x_{0}+\delta \\
& c=f(a), d=f(b) \\
& v=(c, d) .
\end{aligned}
$$ Gueremos arerque $(f / 0)^{-1}$ es C^{1}. Sean $y \in V, F=f / 0, y=F(x)$

$$
\begin{equation*}
\left(F^{-1}\right)^{\prime}\left(y_{0}\right)=\lim _{y \rightarrow y_{0}} \frac{F^{-1}(y)-F^{-1}\left(y_{0}\right)}{y-y_{0}}=\lim _{x \rightarrow x_{0}} \frac{F^{-1}(F(x))-F^{-1}\left(F\left(x_{0}\right)\right)}{F(x)-F\left(x_{0}\right)} \tag{*}
\end{equation*}
$$

Como F y F^{-1} son continuas $x \rightarrow x_{0} \Leftrightarrow y-y_{0}$

$$
\text { (2) }=\lim _{x \rightarrow x_{0}} \frac{x-x_{0}}{\left.F(x)-F_{0}\right)}=\lim _{x \rightarrow x_{0}} \frac{1}{\frac{F(x)-F\left(x_{0}\right)}{x-x_{0}}}=\frac{1}{F^{\prime}\left(x_{0}\right)} \quad\left(\mu \operatorname{cordor} F^{\prime}\left(x_{0}\right) \neq 0 \text { si } x_{0} \in U\right)
$$

Como F^{\prime} es continua $\Rightarrow\left(F^{-1}\right)^{2}$ resulta continua $\Longrightarrow F^{-1}$ es C^{1}
Ejauplo sobre cóno derionar la cuaversa:

$$
f(x)=\operatorname{sen} x, f:[-\pi / 2, \pi / 2] \rightarrow[-1,1], f^{-1}(y)=\operatorname{arcsen} y
$$

$\operatorname{arcsen} y=\int_{0}^{y} \frac{1}{\sqrt{1-t^{2}}} d t$

$$
(\operatorname{arcsen} y)^{\prime}=\frac{1}{f^{\prime}(x)}=\frac{1}{\cos x} \text { donde } y=\operatorname{sen} x .\left\{\begin{array}{l}
\operatorname{sen}^{2} x+\cos ^{2} x=1 \\
\cos ^{2} x=1-\operatorname{sen}^{2} x
\end{array}\right.
$$

$$
=\frac{1}{\sqrt{1-\operatorname{sen}^{2} x^{1}}}=\frac{1}{\sqrt{1+y^{2}}}
$$

$$
\cos x=\sqrt{1-\operatorname{sen}^{2} x}
$$

choefuple: $f(x)=\tan x, f:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R} ; f^{-1}(y)=\operatorname{arctg} y, f^{-1}: \mathbb{R} \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$
\begin{aligned}
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{(\tan x)^{\prime}} & =\cos ^{2} x \quad \operatorname{tande} y=\tan x ; \tan ^{2} x+1=\frac{1}{\cos ^{2} x} \\
& =\frac{1}{1+\tan ^{2} x}=\frac{1}{1+y^{2}} \quad \quad \operatorname{arctg}(y)=\int_{0}^{4} \frac{1}{1+t^{2}} d t
\end{aligned}
$$

Recordar: Ai $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ esuna taves formación lined decinnos que
Tes muersible \Leftrightarrow Tes biyectiva \Leftrightarrow Ttieue una inversa.
Eu ese caso, Lecesariamente $n=m$.
Sea $A=[T]$ es la matriz de T eu la base canónica $\Rightarrow\left[T^{-1}\right]=A^{-1}$

$$
A \cdot A^{-1}=A^{-1} \cdot A=I=\left(\begin{array}{ll}
1 & 1 \\
0^{1} & 0 \\
0 & 1
\end{array}\right)
$$

Tes muersible $\Longleftrightarrow \operatorname{det}(A) \neq 0$ (A es inversible o Avo singulon)

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

Eemple $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

$$
\begin{aligned}
& T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x+y \\
x-y
\end{array}\right] \\
& T\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] ; T\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& \left(\begin{array}{cc|cc}
1 & 1 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right) \\
& \operatorname{det}(A)=1(-1)-1 \cdot 1=-1-1=-2 \neq 0 \text {. } \\
& \left(\begin{array}{cc|c}
1 & 1 & 1 \\
F_{2} \leftarrow F_{2}-F_{1} \\
0 & -2 & -1 \\
1
\end{array}\right){ }_{F_{2} \leftarrow-\frac{1}{2} F_{2}} \\
& \left(\begin{array}{cc|cc}
1 & 1 & 1 & 0 \\
0 & 1 & 1 / 2 & -1 / 2
\end{array}\right) F_{1} \leftarrow F_{1}-F_{2} \text { : } \\
& \left.\left.\left(\begin{array}{ll}
1 & 0
\end{array}\right) \frac{1}{2} \begin{array}{l}
1 / 2 \\
0
\end{array} 1\right) \frac{1 / 2}{2}-1 / 2\right) \quad \Rightarrow A^{-1}=\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right), \operatorname{det}\left(A^{1}\right)-\frac{1}{4}-\frac{1}{4}=-\frac{2}{4}=-\frac{1}{2}=\frac{1}{\operatorname{det}(A)} . \\
& \binom{u}{v}=T\binom{x}{y} ;\binom{x}{y}=T^{-1}\binom{u}{v}=\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right) \quad\binom{u}{v}=\binom{\frac{\mu+v}{2}}{\frac{\mu v}{2}} \\
& \left\{\begin{array} { l }
{ \mu = x + y } \\
{ v = x - y }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x=\frac{\mu+v}{2} \\
y=\frac{\mu-v}{2}
\end{array}\right.\right.
\end{aligned}
$$

Teorema de la función inversa $\in N \mathbb{R}^{n}$. $f: \Omega \rightarrow \mathbb{R}^{n}$ de clase C^{1} sea $x_{0} \in \Omega, y_{0}=f\left(x_{0}\right)$. Suponemas que Df($\left.x_{0}\right)$ es incersible $\left(\begin{array}{l}\left.J\left(x_{0}\right)=\operatorname{det}\left[D f\left(x_{0}\right)\right] \neq 0\right) \\ \text { dacsoranode } f \text { en } x_{0} .\end{array}\right.$ entonces existen un entorno U de $X_{0}(v \subseteq \Omega)$ y an eutono V di yo tales que $f / u: U \rightarrow v e r$ bi yeetiva y $(f / u)^{-1}$ de elase C^{1}.

$$
\left[D(f / 0)^{-1}\left(y_{0}\right)\right]=\left[D f\left(x_{0}\right)\right]^{-1}
$$

Tose da la deunostación de esto en ésta Cuateria.

Eguplo:

$$
\begin{aligned}
& P(r, \theta)=C r \\
& P: A \longrightarrow B
\end{aligned}
$$

$$
\left.[D P(r, \theta)]=\left[\begin{array}{cc}
\cos \theta & -r \operatorname{sen} \theta \\
\operatorname{sen} \theta & r \cos \theta
\end{array}\right]\right\} \begin{aligned}
& A=\{(r, \theta) / r>0, \theta \in(0, \\
& B=\{(x y) / x>0, y>0\}
\end{aligned}
$$

$$
J(r, \theta)=\operatorname{det}[D P(r, \theta)]=r \neq 0 \text { si } r \neq 0
$$

$$
r=\sqrt{x^{2}+y^{2}}
$$

$$
\tan \theta=\frac{y}{x}
$$

$$
(x, y) \in B
$$

$$
\begin{aligned}
& \theta=\operatorname{arctg}\left(\frac{y}{x}\right) \sin \theta \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \\
& A=\left(\begin{array}{cc}
\cos \theta-r \operatorname{sen} \theta \\
\operatorname{sen} \theta & r \cos \theta
\end{array}\right): \quad A^{-1}=?
\end{aligned}
$$

$$
\left(\begin{array}{cc|cc}
\cos \theta & -r \operatorname{sen} \theta & 1 & 0 \\
\operatorname{sen} \theta & r \cos \theta & 0 & 1
\end{array}\right) \xrightarrow{r}\left(\begin{array}{cc|cc}
1 & -r \tan \theta & \frac{1}{\cos \theta} & 0 \\
\operatorname{sen} \theta & r \cos \theta & 0 & 1
\end{array}\right) \xrightarrow{ } \quad \longrightarrow
$$

$$
F_{1} \leftarrow \frac{F_{1}}{\cos \theta} \quad F_{2} \leftarrow F_{2}-\operatorname{sen} \theta F_{1}
$$

$$
\text { phes tan } \theta \operatorname{sen} \theta=\frac{\operatorname{sen}^{3} \theta}{\cos \theta}\left(=r \frac{\cos ^{2} \theta+\operatorname{sen} \theta}{\cos \theta}=\frac{r \cdot 1}{\cos \theta}\right.
$$

Q1) $\frac{1}{\cos \theta}+\pi \tan \theta\left(\frac{\sin \theta}{r}\right) \rightarrow\left(\begin{array}{ll|ll}1 & 0 & \cos \theta & \operatorname{sen} \theta \\ 0 & 1 & -\frac{\operatorname{sen} \theta}{r} & \frac{\cos \theta}{r}\end{array}\right) \Rightarrow A^{-1}=\left(\begin{array}{c}\cos \theta \\ -\frac{\operatorname{sen} \theta}{r} \\ =\frac{1}{\cos \theta} \Rightarrow \frac{\sin \theta}{\cos \theta} \theta \\ =\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta}\end{array}\right.$

$$
\begin{aligned}
& F_{1} \leftarrow \frac{\cos \theta}{\Gamma}+r \text { tone } \theta \\
& \operatorname{det}\left(A^{-1}\right)=\frac{1}{r}
\end{aligned}
$$

$$
\begin{gathered}
=\frac{1+\sin ^{2} \theta}{\cos \theta}=\frac{\cos ^{2} \theta}{\cos \theta}=\cos \theta \\
{\left[D p^{-1}(x, y)\right]=\left[\begin{array}{c}
\cos \\
\frac{-\operatorname{sen}}{r} \\
{\left[\begin{array}{ll}
\frac{\partial r}{\partial x} & \frac{\partial \theta}{\partial x} \\
\frac{\partial r}{\partial y} & \frac{\partial \theta}{\partial y}
\end{array}\right]} \\
(r, \theta)=P^{-1}(x, y) .
\end{array} .\right.}
\end{gathered}
$$

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& \frac{\partial r}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}}}=\frac{r \cos \theta}{r}=\cos \theta \\
& d r=\frac{4}{\sqrt{x^{2}+y^{2}}}=\frac{r \operatorname{sen} \theta}{r}=\operatorname{sen} \theta \\
& \theta=\operatorname{arctg}\left(\frac{y}{x}\right) \\
& \frac{\partial \theta}{\partial x}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}}\left(\frac{-y}{x^{2}}\right)=\frac{1}{\frac{x^{2}+y^{2}}{x^{2}}} \cdot\left(\frac{-4}{x^{2}}\right)=\frac{-4}{x^{2}+y^{2}}=\frac{-r \operatorname{sen} \theta}{r^{2}}
\end{aligned}
$$

Repaso Teoremia de la función inversa.
Supengancos que $f: \Omega \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ es de clase $C^{1}, \Omega \subseteq \mathbb{R}^{n}$ es un abiento. sea $x_{0} \in \Omega$. Spponemes que $D f\left(x_{0}\right)$ es muersible ($\left.\Leftrightarrow J\left(x_{0}\right)=\operatorname{Det}\left(D f\left(x_{0}\right)\right) \neq 0\right)$ entonces excoteu eutornos U de $x_{0}(U \subseteq \Omega)$ y V de $y_{0}=f\left(x_{0}\right)$ talesque $f / 0: U \rightarrow V$ es biyectiona g $(f /)^{-1}: V \rightarrow U$ es de clase C^{1}
Más aim: $D(f /)^{-1}(y)=(D f(x))^{-1}$ donde $y=f(x)$

obs: $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ biyectiv; $g=f^{-1} ; \quad y=f(x), \underline{q}=g(y)$, Lify gron C^{1}

$$
\begin{aligned}
& f_{\circ g}=g \circ f=d \mathbb{R} \\
& \text { Por } \log \left[D(f o g)(y)=D f(x) \text { o } D g(y)=i d \mathbb{R}^{n}(y)=y\right. \\
& \text { logedend } D(g \circ f)(x)=D g(y) \text { - } D f(x)=1 d \mathbb{R}^{n}(x)=x \\
& \Rightarrow D g(y)=D f(x)^{-1}
\end{aligned}
$$

Función implícita.
Def: Sia $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ la curva denivel c de f es el conjato

$$
S_{c}=\left\{(x, y) \in \mathbb{R}^{2} / f(x, y)=c\right\}
$$

Eemplo: $f(x, y)=x^{2}+y^{2} \quad, \nabla f(x, y)=(2 x, 2 y): \quad\|(x, y)\|=\sqrt{x^{2}+y^{2}}=\sqrt{c}$
$S_{c}=$ eincumferencia de sadio \sqrt{c} ardado en el origen $\operatorname{si} c>0$

$$
\begin{aligned}
& S_{0}=\{(0,0)\} \\
& S_{c}=\phi \text { si } c<0 .
\end{aligned}
$$

TEOREMA DE LA FUNCión implicita (en \mathbb{R}^{2}) , $f: \Omega \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ de clase C^{1}, $\Omega \subseteq \mathbb{R}^{2}$ abierta, $P \in \Omega, P=\left(x_{0}, y_{0}\right), C=f(P)$. Suponganios que $\frac{d f}{d y}(p) \neq 0$ entonces existen un entono U de x_{0}, un entormo V de y_{0} y una función $\varphi: u \rightarrow v$ tales quesi $(x, y) \in u \times V, V$,

$$
f(x, y)=c \Leftrightarrow y=\varphi(x) \quad((x, y) \in S c)
$$

(dentio der rectón gelo $U \times V$ puedo despefor y coma función de X $\operatorname{sc} \cap(u \times V)=$ guáficode φ

Obs: eu la sifuación del teorema: $f(x, \varphi(x))=c \quad \forall x \in U$

$$
\begin{aligned}
& \Rightarrow \frac{\partial f}{d x}(x, \varphi(x)) \cdot \frac{\partial x}{\frac{\partial x}{\partial x}}+\frac{\partial f}{\partial y}(x, \varphi(x)) \cdot \varphi^{\prime}(x)=0 \\
& \varphi^{\prime}(x)=-\frac{\frac{\partial f}{\partial x}(x, \varphi(x))}{\frac{\partial f}{\partial y}(x, \varphi(x))}
\end{aligned}
$$

Ejempl: $c=1, f(x, y)=x^{2}+y^{2}$.

$$
\begin{aligned}
& S_{c}=\left\{(x, y) \in \mathbb{R}^{2} / x^{2}+y^{2}=1\right\} \\
& \frac{\partial f}{\partial x}(x, y)=2 x \\
& \frac{\partial f}{\partial y}(x, y)=2 y \\
& \varphi^{\prime}(x)=-\frac{2 x}{2 y}=\frac{-x}{y}=\frac{-x}{\sqrt{1-x^{2}}} \\
& y=\varphi(x)
\end{aligned}
$$

- $f(x, y)=x^{2}+y^{2} \quad P=(1,0) \quad \frac{\partial f}{d y}(1,0)=0$ (eltcorema corno la
$C=1 \quad \frac{\partial f}{\partial x}(1,0)=2 \neq 0$.

$$
\begin{aligned}
& P=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) . \\
& x^{2}+y^{2}=1 \\
& y^{2}=1-x^{2} \\
& y=\sqrt{1-x^{2}}=\varphi(x) . \\
& \varphi^{\prime}(x)=\frac{-2 x}{2 \sqrt{1-x^{2}}}
\end{aligned}
$$

$$
\frac{\partial f}{\partial x}(1,0)=2 \neq 0
$$

existe uneutorno de P doride $f(x, y)=1 \Leftrightarrow x=\tilde{\varphi}(y)$

$f(x, y)=x^{2}+y^{2}$; el Jeorema

$$
p=(0,0)
$$

ha se
$c=0$,

$$
\begin{aligned}
& \nabla f(0,0)=(0,0) \\
& S_{c}=\{(0,0)\}
\end{aligned}
$$

fupongaruosque estomas en la situación dé teorama cormo la envencié.
¿Cual es la recto tangerte al gráfica de gens?

$$
\begin{aligned}
& y=y_{0}+\varphi^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \quad P=\left(x_{0}, y_{0}\right) \\
& y=y_{0}+-\frac{\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)}{\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)} \cdot\left(x-x_{0}\right) \\
& \left(y-y_{0}\right) \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=-\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right) \\
& \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=0 \\
& \left\langle\nabla f\left(x_{0}, y_{0}\right),(x, y)-\left(x_{0}, y_{0}\right)\right\rangle=0 \quad \rightarrow \text { (ordogonal) }
\end{aligned}
$$

$\Rightarrow \nabla f\left(x_{0}, y_{0}\right)$ es perpendiculas a la necta tangeute al gráfico de ceup

$$
\Rightarrow \nabla f(p)
$$

(valesi $\nabla f(p)$ puesentonces $\frac{d f}{\partial x}(P) \neq 0$. - $\frac{\partial f}{\partial y}(P) \neq 0$ y $\operatorname{si} \frac{\partial f}{\partial X} \neq 0$ puede seoperas X y Laces la auianua cueuta).
¿Quápossos $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$?
$S_{C}=\left\{(x, y, z) \in \mathbb{R}^{3} / f(x, y, z)\right\}$ is la superficude nivel C

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x}(x, y)=\frac{-\frac{\partial f}{\partial x}(x, y, z)}{\frac{\partial f}{\partial z}(x, y z)} \\
\frac{\partial \varphi}{\partial y}(x, y)=-\frac{\frac{\partial f}{\partial y}(x, y, z)}{\frac{\partial f}{\partial z}(x, y, z)}
\end{array}\right.
$$

sonde $(x, y) \in u$

Simitarmuenk si $p \in S_{C}$ y $\nabla f(p) \geqslant 0$
\Rightarrow el plaw taugenti a \& en pes

$$
\langle\nabla f(p),(x, y, z)-p\rangle=0
$$

$\nabla f(P)$ es ar togoral a $S c$ un P.

Ejewipl: $f(x, y, z)=x^{2}+y^{2}+z^{2}, \quad P=(1,1,2), f(p)=c=6$.
$S_{c}=$ esferade radia \sqrt{C} coufada enel origen,
¿Cual es el phanoty a S_{c} en P ?

$$
\begin{aligned}
& \nabla f(x, y, z)=(2 x, 2 y, 2 z), \nabla f(p)=(2,2, y) \\
& \langle(2,2, y),(x, y, z)-(2,2,4)\rangle \\
& =2(x-1)+2(y-1)+4(z-2)=0 \rightarrow \text { forma cuplícita de la ecucción } \\
& =2 x-2+2 y-2+4 z-8=0 . \\
& 4 z=-2 x-2 y+12 \\
& z=\frac{-x}{2}-\frac{y}{2}+3 \rightarrow \text { fomua explícita }
\end{aligned}
$$

etha forma:

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}=6 \Leftrightarrow z=\frac{+\sqrt{6-x^{2}-y^{2}}}{g(x, y)} \quad g(1,1)=\sqrt{4}=2 . \\
& f: \mathbb{R}^{3} \rightarrow \mathbb{R} \\
& g: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& z=g(1,1)+\frac{\partial g}{\partial x}(1,1)(x-1)+\frac{\partial g}{\partial y}(1,1)(y-1) \\
& \frac{\partial g}{\partial x}(x, 4)=\frac{-x}{\sqrt{6-x^{2}-y^{2}}} \quad \frac{\partial g}{\partial x}(1,1)=\frac{-1}{2} \\
& \frac{\partial g}{\partial y}(x, y)=\frac{-y}{\sqrt{6-x^{2}-y^{2}}} \quad \frac{\partial g}{\partial y}(1,1)=\frac{-1}{2} . \\
& \Rightarrow z=2+\left(\frac{-1}{2}\right)(x-1)+\left(\frac{-1}{2}\right)(y-1)=3-\frac{x}{2}-\frac{y}{2}
\end{aligned}
$$

Maximizar ominimizon\| $f(x), \quad x \in \mathbb{R}^{n}$

$$
g(x)=c
$$

$f, g: \mathbb{R}^{n} \longrightarrow \mathbb{R}$

- Hujera

$$
g(x) \leqslant c
$$

Ejeruploen \mathbb{R}^{2} : unaximuzan $x y$
sugeta a la restricción $x^{2}+y^{2}=1$

$$
f(x, y)=x \cdot y \quad g(x, y)=x^{2}+y^{2}, \quad S=\left\{(x, y) \in \mathbb{R}^{2} / g(x, y)=1\right\}
$$

$\begin{aligned} & \text { Ses un compacto } \\ & \text { f escortimua }\end{aligned} \Rightarrow \mathrm{f} / \mathrm{s}$ tiene algún nuóximo
$s=S^{+}$us $^{-}$

$$
\begin{aligned}
& S^{*}=\left\{\left(x, \sqrt{1-x^{2}}\right) / x \in[-1,1]\right\} \\
& S=\left\{\left(x,-\sqrt{1-x^{2}}\right) / x \in[-1,1]\right\}
\end{aligned}
$$

$$
h(x)=x \sqrt{1-x^{2}} \quad h:[-1,1] \rightarrow \mathbb{R}
$$

I sera' Maiximua en $x=x_{0} \Leftrightarrow h^{2}$ lo es

$$
l(x)=h^{2}(x)=x^{2}\left(1-x^{2}\right)=x^{2}-x^{4} \quad l^{\prime}(x)=2 x-4 x^{3}
$$

$l(x)$ dieve los ptos eníticos:

$$
\frac{-1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \quad \quad x^{2}=1 / 2 \Rightarrow x= \pm \frac{1}{\sqrt{2}}
$$

$l(0)=0$,
$l(1)=l(-1)=0$$\quad \Rightarrow \quad l$ yperdotauto h alcauza el amaximul $l(1)=l(-1)=0 \quad$ en $x= \pm \frac{1}{\sqrt{2}}$

$$
\begin{aligned}
& l\left(\pm \frac{1}{\sqrt{2}}\right)=\frac{1}{2}-\frac{1}{4}=\frac{1}{4} \\
& h\left(\pm \frac{1}{\sqrt{2}}\right)=\frac{1}{2} .
\end{aligned}
$$

f/s alcanzer el ama ximo en $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ que es $\frac{1}{2}$. en $\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ se alcanza el duíarinuo de f quess $\frac{-1}{2}$.

Teorema del multiplicador de Lagrange $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, clasec ${ }^{1}$ Suponganos que queremor huaxinnizar ominimizan $f(x)$ sujeta a la condición $x \in S_{c}=\left\{x \in \mathbb{R}^{n} / g(x)=c\right\}$.
Lif/sc tiene cue parto P un buáxinvo animpio (local) $y \nabla g(p) \neq 0$, eutonces $\exists \lambda \in \mathbb{R}$ (el multiplicador de lagrange) talque $\nabla f(P)=\lambda \nabla g(P)$

Enel ajemplode autes:

$$
\begin{aligned}
& f(x, y)=x y \\
& g(x, y)=x^{2}+y^{2}=1 \quad(c=1)
\end{aligned}
$$

$$
\nabla g(x, y)=(2 x, 2 y) \neq(0,0) \text { si }(x, y) \in S_{1}
$$

$\nabla f(x, y)=(y, x)$. si en $P=\left(x_{0}, y_{0}\right)$ se alcauza el duáxinua \Rightarrow per el fernon
exiote $\lambda \in \mathbb{R}: \nabla f\left(x_{0}, y_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}\right)$

$$
\begin{array}{llr}
y_{0}=2 x_{0} \lambda & \frac{y_{0}}{2 x_{0}}=\lambda=\frac{x_{0}}{2 y_{0}} & 2 y_{0}^{2}=2 x_{0}^{2} \\
x_{0}=2 y_{0} \lambda & y_{0}^{2}=x_{0}^{2} \\
x_{0}^{2}+y_{0}^{2}=1 & 2 x_{0}^{2}=1 & \left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right)
\end{array}
$$

Teorema del multiplicador de lagrange.
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, clase $C^{1}, f(x)$ sujeta ala condición $x \in S_{c}=\left\{x \in \mathbb{R}^{n} / g(x)=c\right\}$
\& f / S_{c} tieve curpunto P un anáxicuro o Animimo local y $\nabla g(P) \neq 0$ entonas $\exists \lambda \in R$ (el anultiplicador de Lagrange). tal que $\nabla f(P)=\lambda \nabla g(P)$

Recordemos que el plano tg a S_{c} en P_{0} es parpendicular a $N=\nabla g\left(P_{0}\right)$ $x \in p l a n o t g \Leftrightarrow\langle x-p, N\rangle=0$.
En elplanoty: $T_{p} S=\left\{v \in \mathbb{R}^{n} \mid\langle v, N\rangle=0\right\}$ Jubespacio qectorial de \mathbb{R}^{n}

$$
=P+T_{p} S_{c}
$$

LEMA: Spongamos $N=\nabla \operatorname{Vg}(P) \neq \overrightarrow{0} \Rightarrow$

$$
T_{p} S_{c}=\left\{v \in \mathbb{R}^{n} / \exists \text { une arve } \alpha:(\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{n} \text { de Clase } C^{1} \text { falque } \alpha(0)=P, \alpha^{\prime}(0)=v \wedge \alpha(t) \in S_{c} \forall t \in(\varepsilon, \varepsilon)\right\}
$$

Dem: $T_{p} S_{c}=\left\{v \in \mathbb{R}^{n} /\langle v, N\rangle=0\right\}$

$$
\widetilde{T}_{p} S_{c}=\left\{\nabla \in \mathbb{R}^{n} / \exists \text { aurv } \alpha:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{n} d e C^{1} t_{a l} \text { que } \alpha(0)=P, \alpha^{\prime}(0)=r \text { y } \alpha(t) \in S_{c} \forall t \in(-\varepsilon, \varepsilon)\right\}
$$

Veormosque $\widetilde{T} S_{c} \subseteq T_{p} S c:$
Sea $v \in \widetilde{T_{p}} S_{c} / g(\alpha(t))=c$ (comstante) $\forall t$
Usaudo la regla de la cadena,

$$
\begin{aligned}
& \left\langle\nabla g(\alpha(t)) \mid \alpha^{\prime}(t)\right\rangle=0 \\
& \operatorname{con} t=0:\left\langle\nabla g(p), \alpha^{\prime}(0)\right\rangle=0 \\
& \langle N, v\rangle=0 \Rightarrow v \in T_{p} S c
\end{aligned}
$$

veamionque TpSc S TpSS
Sear $V /\langle A v, N\rangle=0$, coms $\nabla g(P) \neq 0 \Rightarrow \exists j \in[1, n]: \frac{d g}{\partial x_{j}}(P) \neq 0$
Podemos suponen $\frac{\partial g}{\partial x_{n}}(p) \neq 0$.
$\Rightarrow \exists$ eutorno V de $\widetilde{F}=\left(P_{1} \ldots P_{n-1}\right) \in \mathbb{R}^{n-1}$, eutorno V de P_{n} y unafación $P: v \rightarrow v$ declese C^{1} Jolque si $X=\left(x_{1}, \ldots, x_{n}\right) \in U_{X V} \Rightarrow g\left(x_{1}, \ldots, x_{n}\right)=c$ (teo. de la función implicita). $\Leftrightarrow x_{n}=Q\left(x_{1}, \ldots, x_{n-1}\right)$

Sea $v /\langle v, N\rangle=0, v=\left(v_{1}, \ldots, v_{n}\right)$, considev $\tilde{v}=\left(v_{1}, \ldots, v_{n-1}\right)$
Sear $P=\left(P_{1}, \ldots, P_{n}\right)$ y $\widetilde{P}=\left(P_{1}, \ldots, P_{n-1}\right)$
defino $\alpha(t)=(\widetilde{P}+t \widetilde{v}, \varphi(\widetilde{P}+t \widetilde{v})) \in S_{c}$, si $t \in(\varepsilon \varepsilon, \varepsilon)$
Sicalculo $\alpha(0)=(\widetilde{P}, \varphi(\widetilde{P}))=P$
$\alpha^{\prime}(t)=(\vec{v} ;)^{\prime}$ quo φ es de n-1 craviables.
$\circledast=\sum_{j=1}^{n-1} \frac{\partial \varphi}{\partial x_{j}}(\tilde{p}+t v) v_{j}$ (paregladela cadens)
Eucuento a cualpcuier $P / t=0$;

$$
\begin{aligned}
\alpha^{\prime}(0)=\left(\vec{v} \sum_{j=1}^{n-1} \frac{\partial q}{\partial x_{j}}(\vec{p}) \cdot v_{j}\right) & =\left(\vec{v}, \sum_{j=1}^{n-1}\left(-\frac{\frac{\partial g}{\frac{\partial x_{j}}{}(P)}}{\frac{\partial g}{\partial x_{j}}(P)}\right) \cdot \nabla_{j}\right) \\
\begin{aligned}
N=\nabla g(P), N=\left(N_{1}, \cdots, N_{n}\right)
\end{aligned} & \left.=\vec{v}, \sum_{j=1}^{n-1}\left(-\frac{N_{g}(P)}{N_{n}(P)}\right) \cdot v_{j}\right)
\end{aligned}
$$

Queremos derque $\sum_{j=1}^{n-1}\left(-\frac{N_{g}}{N_{n}}\right) \cdot v_{j}=v_{n} \quad$ (parque $\alpha^{\prime}(0)=v$)
Para esto, uso la hipótesio
Como $\left\langle v_{1}, N\right\rangle=0 \Rightarrow \sum_{j=1}^{n}\left(v_{j} \cdot N_{j}\right)=0 \Rightarrow$ def de prod. escalan.

$$
\begin{aligned}
& \sum_{j=1}^{\hat{-1}^{-1}}\left(\frac{-N_{g}}{N_{m}}\right) \cdot v_{j}=-\frac{1}{N_{n}} \sum_{j=1}^{n-1} N_{j} v_{j}=-V_{n} \\
& -\frac{1}{N_{n}} \cdot\left(-N_{n} v_{n}\right)=v_{n}
\end{aligned}
$$

$\Rightarrow T_{p} S_{c} \subseteq T_{p} S_{c} \quad$ No se doma en el final.

- demostración del teorema de lagrenge.

Dromos a crenque: $\frac{\partial f}{\partial v}\left(P_{0}\right)=0 \quad \forall q \in T_{p_{0}} S_{e}$
Supongamos que f/sc tiene un Máxiono o Quínimo eu P.
Sivcrive en el plono $t g \Rightarrow$ por el luma:

$$
\exists \alpha:(\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{n} / \alpha(0)=P_{0}, \quad \alpha^{\prime}(0)=r \wedge \alpha(t) \in S_{c} \forall t^{\prime}
$$

$f(\alpha(t)) \leqslant f\left(P_{0}\right)$ siftiene en P_{0} un Chínimo local
$f(\alpha(t)) \geqslant f\left(P_{0}\right)$ diftiene en Po un máxino loeal:
\Rightarrow foxtiene en $t=0 \mathrm{~cm}$ Muiximur o Minimo local.

$$
\Rightarrow f o x^{\prime}(0)=0
$$

$(f \circ x)^{\prime}(t)=\left\langle f(\alpha(t)), \alpha^{\prime}(t)\right\rangle$ por regla de la cadeva.

$$
\begin{aligned}
& \text { ent=0:(f(x),(0)=} \begin{array}{l}
\quad\left\langle\nabla f(\alpha(0)), \alpha^{\prime}(0)\right\rangle \\
\\
=\left\langle\nabla f\left(P_{0}\right), v\right\rangle=\frac{\partial f}{\partial v}\left(P_{0}\right) \quad \text { pues fes diferenciable } \\
(*)
\end{array} \begin{array}{l}
\Rightarrow \frac{\partial f}{\partial v}\left(P_{0}\right)=0 \\
0\left\langle\nabla f\left(P_{0}\right), v\right\rangle=0 \forall v \in T_{p} S_{c}
\end{array}
\end{aligned}
$$

Tenemos a $N=\nabla g\left(P_{0}\right)_{g}, \begin{aligned} & W=\nabla f\left(P_{0}\right) \\ & W\end{aligned}$
$w=w_{1}+w_{2}$ donde $w_{1} / / N \cdot y w_{2} \perp N$
Aplico * a $v=w_{2} \in T_{p} S_{c}$

$$
\begin{aligned}
& \left\langle\nabla f\left(p_{0}\right), w_{2}\right\rangle=0 \\
& \left\langle w_{1}+w_{2}, w_{2}\right\rangle=0 \\
& \left\langle w_{1}, w_{2}\right\rangle+\left\langle w_{2}, w_{2}\right\rangle=0 \quad \text { Convo } w_{1} \perp w_{2} \Rightarrow\left\langle w_{1}, w_{2}\right\rangle=0 \\
& 0+\left\langle w_{2}, w_{2}\right\rangle=0 \\
& \left\|w_{2}\right\|^{2}=0 \\
& \Rightarrow w_{2}=0 \\
& \Rightarrow w_{1}=w_{1}
\end{aligned} \begin{aligned}
& \Rightarrow \nabla f\left(P_{0}\right)=\lambda v=\lambda \nabla g\left(P_{0}\right)
\end{aligned}
$$

Integrales
Def: Sea $f:[a, b] \rightarrow \mathbb{R}$ acotada (ypor logeneral continua)
Sif $f(x) \geqslant 0$ y contimua:
Una partición π de $[a, b]$ as un conjunto de puntor dande alprimer porso $a=x_{0}<x_{1}<x_{2}<\ldots<x_{k}=b$

buscere $m_{I}=\operatorname{lnf} f(x)$

$$
\ln f_{x \in\left[x_{i-1}, \ldots x_{i}\right]} f(x)
$$

$$
M_{i}=\operatorname{Sup} f(x) \quad \operatorname{Sup}_{x \in\left[x_{i-1}, \cdots x_{i}\right]} f(x)
$$

Exiote siempre si f es a cotada
fijada cuna portición II de $[a, b]$ y dada $f:[a, b] \rightarrow \mathbb{R}$ acotada, de firinos Su Suma iuferior de Riemen.

$$
J_{\pi}(f)=\sum_{j=1}^{k-1} m_{i} \Delta x_{i} \text {, donde } \Delta x_{i}=x_{i \omega}-x_{i-1}
$$

Surna superior:

$$
S_{\pi}(f)=\sum_{i=1}^{k-1} M_{i} \Delta x_{i} \text {, donde } \Delta x_{i}=x_{i}-x_{i-1}
$$

;Aproximaciones proseras!
Def: Integral Infecioc: $I=\int_{a}^{b} f(x) d x=\sup \left\{S_{\pi}(f) / \pi\right.$ es una pantición de $\left.[a, b]\right\}$
Integral Supecior: $S_{a}=\int^{b} f(x) d x=\ln f\left\{S_{\pi}(f) / \pi\right.$ es una partición de $\left.[a, b]\right\}$
Def: fes integrable (en el suutido de Rieman) en $[a, b]$
Li $I=S$ y lo hotamos $\int_{a}^{b} f(x) d x$
Nota: Hay funciones que Cho camplen esto.
TEOREMA: Si $f:[a, b] \rightarrow \mathbb{R}$ es continua en un cutervalo cerrado \Rightarrow escutegrableen $[a, b]$ demo. en el Larotonda
obs: $\Lambda_{\pi}(f) \leq S_{\pi}(f)$

* Criterio de integrabilidad.
fes utegrable eu $[a, b] \Leftrightarrow \exists$ uno sucessión $\left(\pi_{n}\right)$ de particioros de $[a, b]$ tolesque $S_{\pi_{n}}(f)-\int_{\pi_{n}}(f) \longrightarrow 0$ Quacudo $n \longrightarrow \infty$
Alemín desso situación, $h S_{\pi n}(f) \longrightarrow \ell \Rightarrow \int_{a}^{b} f(x) d x=\ell$.
- Culcularervos una usegual con la definición.
$\int_{0}^{1} x d x$, tomo perticiones, tomo la partición unifonme
π_{n} pont. unif. d $[0,1]$.

1	$\frac{1}{n}$	$\frac{1}{2 / n}$	$\frac{n-1}{n}$
1			

Sifesdecrecreude, ere este cass: $m_{i}=x_{i-1}=\frac{i-1}{n}$

$$
M_{i}=x_{i}=\frac{1}{n}
$$

Como la part. is uniforme: $\Rightarrow \Delta x_{i}=\frac{1}{n}$:

$$
\begin{aligned}
& \Lambda_{\pi}(f)=\sum_{i=1}^{n}\left(\frac{i-1}{n}\right) \frac{1}{n}=\frac{1}{n^{2}} \sum_{i=1}^{n}(i-1)=\frac{1}{n^{2}} \frac{(n-1) n}{2} \rightarrow \frac{1}{2} \text { cuando } n \rightarrow \infty \\
& S_{\pi}(f)=\sum_{i=1}^{n}\left(\frac{i}{n}\right) \cdot \frac{1}{n}=\frac{1}{n^{2}} \sum_{i=1}^{n} i=\frac{1}{n^{2}} \frac{n(n+1)}{2} \rightarrow \frac{1}{2} \text { cuendo } n \rightarrow \infty .
\end{aligned}
$$

- Ota cutegral calculado con la definición de untegral.

$$
f(x)=x^{2} ; \int_{0}^{1} x^{2} d x \text {, arcumbe. }
$$

Orando la def de eurtegral:

$$
\begin{aligned}
& S_{\pi}(f)=\sum_{i=1}^{n}\left(\frac{i-1}{n}\right)^{2} \frac{1}{n} \\
& S_{\pi}(f)=\sum_{i=1}^{n}\left(\frac{i}{n}\right)^{2} \cdot \frac{1}{n}=\frac{1}{n^{3}} \sum_{i=1}^{n} i^{2}
\end{aligned}
$$

Heson la ustgal un un línite, Treanorau caso en el que funcione la cosary otro en el que no funciona.
Osodefinición de cuteguabilidard en f no untegrable.
Sidonuanos algo Convo:
$f(x)=\left[\begin{array}{lll}-1 & \text { si } x<0 \\ 0 & \text { si } x=0 \\ 1 & \text { si } x>0\end{array} \quad\right.$ Encuór descentinus eu uupunto, f descontinua

$$
\begin{aligned}
& \int_{-1}^{1} f(x) d x \\
& f(x)=\left\{\begin{array}{lll}
1 & \text { si } x \text { es racional } & f[0,1] \rightarrow 1 \\
0 & \text { si } x \text { unacional. }
\end{array}\right.
\end{aligned}
$$

¿Quépasa Ai entegra en el $[0,1]$?

$$
\begin{array}{ll}
J_{\pi}(f)=0, & S_{\pi}(f)=\sum_{i=1}^{n} 1 x_{i}=1 \\
m_{i}=0 & M_{i}=1 .
\end{array}
$$

La integral unferior paraesta función es cew: $\int_{0}^{1} f(x) d x=0$ la untegral supariorpars esta funciónes uno: $\int_{0}^{1} f(x) d x=1$
\Rightarrow Ruego,
Frua es ustegrable:

Ieorema fundamentalde / cálaulo
Parte 1: $A: f:[a, b] \rightarrow \mathbb{R}$ contianua, y defino $F(x)=\int_{a}^{x} f(t) d t$, entonces f esderinable en (a, b) y $F^{\prime}(x)=f(x) \quad \forall x \in(a, b)$
Parte 2: Regla de barrow.
Dadacuma función, situgo muautegral $\int_{a}^{b} g(x) d x$ con g continca y $\exists G:[a, b] \rightarrow \mathbb{R}$ coutinua eu $[a, b]$ derivableen $(a, b) / \epsilon^{\prime}(x)=f(x) \in(a, b)$ \Leftrightarrow uniapuinuitizade $g) \Rightarrow \int_{a}^{b} g(x) d x=6(b)-6(a)$
se toma en los finales

Teorema fundamental del cálcula.

1. If $f:[a, b] \rightarrow \mathbb{R}$ acotada e cutegrable en $[a, b]$. Sea $F(x)=\int_{a}^{X} f(t) d t$ Sienunpurto $X_{0} \in(a, b)$ is esstinua \Rightarrow fesderimable en X_{0}.

$$
\text { y } F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)
$$

2. Regla de Barrow. Suponganor que $G:[a, b] \rightarrow \mathbb{R}$ es una primitima de $f(x)$ (Ges contimua en $[a, b]$, derivable en (a, b) y $G^{\prime}(x)=f(x) \quad \forall x \in(a, b)$). entonces $\int_{a}^{b} f(x) d x=G(b)-G(a)$.
Propiedades de la integral.
3. Linealided respecto de la función:

$$
\begin{aligned}
& \int_{a}^{b}\left(f_{1}+f_{2}\right)(x) d x=\int_{a}^{b} f_{1}(x) d x+\int_{a}^{b} f_{2}(x) d x \\
& \int_{a}^{b}(\lambda \cdot f)(x) d x=\lambda \int_{a}^{b} f(x) d x \quad(\lambda \in \mathbb{R})
\end{aligned}
$$

2. Aditividad respecto del intervalo

$$
\begin{aligned}
& \int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x . \\
& \int_{a}^{a} f(x)=0 \quad ; \int_{a}^{b} f(x) d x=-\int_{a>b}^{a} f(x) d x
\end{aligned}
$$

3 Monotonie.

$$
\begin{aligned}
& \text { S } f(x) \leqslant g(x), \forall x \in[a, b] \\
& \Rightarrow \int_{a}^{b} f(x) d x \leqslant \int_{a}^{b} g(x) d x
\end{aligned}
$$

Ejemplo: si $m, M \in \mathbb{R} ; m \leq f(x) \leqslant M$

$$
\Rightarrow m(b-a) \leqslant \int_{a}^{b} f(x) d x \leqslant M(b-a)
$$

4. Desigualdad tciangular para integrales.

$$
\begin{aligned}
& -|f(x)| \leqslant f(x) \leqslant|f(x)| \quad \forall x \in[a, b] \\
& -\int_{a}^{b}|f(x)| d x \leqslant \int_{a}^{b} f(x) d x \leqslant \int_{a}^{b}|f(x)| d x
\end{aligned}
$$

$\Rightarrow\left|\int_{a}^{h} f(x) d x\right| \leqslant \int_{\substack{b}(x) d x \text { desigualdad hiaugulan. } 1 \text {. } 10 b \leq}^{b}$
$\left|\int_{a}^{b} f(x) d x\right| \leqslant\left|\int_{a}^{b}\right| f(x)|d x|$ a $y b$ en cualquier arden.

$$
\therefore \quad 5 \cdot \int_{a}^{b} \lambda d x=\lambda(b-a) \quad \forall \lambda \in \mathbb{R}
$$

Prueba del teocema Fundamental del Cálaulo.
Den 1. Queremos verque $F^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{F(x)-F\left(x_{0}\right)}{x-x_{0}}=F\left(x_{0}\right)$
$F(x)-F\left(x_{0}\right)=\int_{a}^{x} f(t) d t-\int_{a}^{x_{0}} f(t) d t=\int_{x_{0}}^{x} f(t) d t$. por lapropiadad de aditividad respecto al internala

$$
\begin{aligned}
& \left\lvert\, \frac{E(x)-F\left(x_{0}\right)-f\left(x_{0}\right)\left|=| |\left(\frac{1}{x-x_{0}} \int_{x_{0}}^{x} f(t) d t\left|-f\left(x_{0}\right)\right|\right.\right.}{=\left|\left(\frac{1}{x-x_{0}} \int_{x_{0}}^{x} f(t) d t\right)-\left(\frac{1}{x-x_{0}} \int_{x_{0}}^{x} f\left(x_{0}\right) d t\right)\right|}\right.
\end{aligned}
$$

$=\left|\frac{1}{x-x_{3}} \int_{x_{0}}^{x}\left(f(t)-f\left(x_{0}\right)\right) d t\right|$ por la limealidad de la eutigral.
$\leqslant\left|\frac{1}{x-x_{0}} \int_{x_{0}}^{x}\right| f(t)-f\left(x_{0}\right)|d t|$ por la desigualdad diagglan paro cutgeales

$$
=\frac{1}{\left|x-x_{0}\right|}\left|\int_{x_{0}}^{x}\right| f(t)-f\left(x_{0}\right)|d t|<\varepsilon \text { si }\left|x-x_{0}\right|<\delta \quad \lim _{x \rightarrow x_{0}} \frac{F(x)-f\left(x_{0}\right)=f\left(x_{0}\right)}{x-x_{0}}
$$

Por hipótesis, fes contiania en $x_{0} \Rightarrow$ dado $\varepsilon>0 \exists \partial>0 /\left|t-x_{0}\right|<\delta$ entonces $\left|f\left(x_{0}\right)-f(t)\right|<\varepsilon$. Luego; si $x>x_{0}$:

$$
\begin{aligned}
&\left|\frac{F(x)-F\left(x_{0}\right)}{x-x_{0}}-f\left(x_{0}\right)\right| \leqslant \frac{1}{\mid x-x_{0}} \int_{x_{0}}^{x}\left|f(t)-f\left(x_{0}\right)\right| d t \\
& \leqslant \frac{1}{\left|x-x_{0}\right|} \int_{x_{0}}^{x} \varepsilon d t=\frac{1}{x-x_{0}} \varepsilon\left(x-x_{0}\right)=\varepsilon . \\
& \mathcal{N} x<x_{0}: \\
& \left.\left|\frac{F(x)-F\left(x_{0}\right)}{x-x_{0}}\right| \leqslant \frac{1}{x_{0}-x}\left|-\int_{x}^{x_{0}}\right| f(t)-f\left(x_{0}\right) \right\rvert\, d t \leqslant \frac{1}{x-x_{0}}\left(\int_{x}^{x_{0}} \varepsilon d x\right)=\varepsilon .
\end{aligned}
$$

2. Sea $H(x)=G(x)-F(x)$ donde $F(x)=\int_{a}^{x} f(t) d t \Rightarrow H^{\prime}(x)=F^{\prime}(x)-G^{\prime}(x)=f(x)-f(x)=0$ $\forall x \in(a, b)$
$\Longrightarrow H(x)=c \forall x \in(a, b)$ donde $c \in \mathbb{R}$ es uns constaute.
$\begin{array}{rl}\text { (sale por el seoremo de Lagrange: } \frac{1}{x_{1}} x_{2} & H\left(x_{1}\right)-H\left(x_{2}\right)\end{array}=H^{\prime}(c)\left(x_{1}-x_{2}\right) \operatorname{con} c \in\left(x_{1}, x_{2}\right)$)

$$
\Rightarrow G(x)=c+\int_{a}^{x} f(t) d t \quad \forall x \in(a, b)
$$

Hago $x \rightarrow a, G(x) \rightarrow G(a)$ por la continuidad de 6

$$
\int_{a}^{x} f(t) d t \rightarrow 0
$$

(Comes es continua, $\Rightarrow|f(x)| \leqslant M$ por elteremas de Werienstrass.

$$
\left|\left|\int_{a}^{x} f(t) d t\right| \leqslant \int_{a}^{x}\right| f(t) \mid d t \leqslant \int_{a}^{x} M d t=M(x-a) \rightarrow 0 \text { si } x \rightarrow a
$$

en (*) hacemos $x \rightarrow b: \int_{a}^{x} f(t) d t \rightarrow \int_{a}^{b} f(t) d t$. (Fes continua).

$$
\begin{aligned}
& \left|\int_{a}^{x} f(t) d t-\int_{a}^{b} f(t) d t\right|=\left|\int_{x}^{b} f(t) d t\right| \leqslant M(b-x) \rightarrow 0 \text { aando } x \rightarrow b \\
& G(b)=c+\int_{a}^{b} f(t) d t \Rightarrow G(b)=G(a)+\int_{a}^{b} f(t) d t \\
& \Rightarrow \int_{a}^{b} f(t) d t=G(b)-G(a)
\end{aligned}
$$

INTEORALES IMPROPIAS.
E: $\alpha>0, \int_{0}^{1} \frac{1}{x^{\alpha}} d x=\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{1} x^{-\alpha} d x$

$$
\int x^{-\alpha} d x=\frac{x^{i-\alpha}}{1-\alpha}+c x \neq 1
$$

$$
=\lim _{\varepsilon \rightarrow 0}\left(\frac{1^{1-\alpha}}{1-\alpha}-\frac{\varepsilon^{1-\alpha}}{1-\alpha}\right)
$$

$\left\{\begin{array}{ll}\frac{1}{1-\alpha} \text { si } 0<\alpha<1 & \text { la cutegral aupropia converge } \\ +\infty & \text { si } \alpha>1\end{array}\right.$ la mitegral divenge
Equplo. $\int_{0}^{\infty} e^{-k} d x=\lim _{M \rightarrow \infty} \int_{0}^{1} e^{-x} d x=\lim _{M \rightarrow \infty}-\left.e^{-x}\right|_{0} ^{M}=\lim _{M \rightarrow \infty}\left(-e^{-M}-(-1)\right)=1$

Def $\int_{0}^{\infty} f(x) d x=\lim _{M \rightarrow \infty} \int_{0}^{M} f(x) d x \quad f$ contimua en $[0, M)$
Eguplo: $\int_{-\infty}^{\infty} \frac{1}{1+x} d x=\lim _{\substack{M_{1} \rightarrow+\infty \\ M_{2} \rightarrow+\infty}} \int_{M_{1}}^{M_{2}} \frac{1}{1+x} d x$

$$
\begin{aligned}
& =\lim _{\substack{M_{i} \rightarrow \infty \\
m_{i} \rightarrow \infty}} \operatorname{arctg}\left(M_{2}\right)-\operatorname{arctg}\left(-M_{1}\right) \\
& =\frac{\pi}{2}-\left(\frac{-\pi}{2}\right)=\pi
\end{aligned}
$$

Euuplo: $\int_{-1}^{1} \frac{1}{\sqrt[3]{x}} d x=\int_{-1}^{1} x^{-1 / 3} d x=\lim _{\substack{k \\ \varepsilon_{2} \rightarrow 0}}\left(\int_{-1}^{\varepsilon_{2}} \frac{1}{\sqrt[3]{x}} d x+\int_{\varepsilon_{1}}^{1} \frac{1}{\sqrt[3]{x}} d x\right)$

$$
\begin{aligned}
& =\lim _{\substack{\varepsilon_{1} \rightarrow 0}}^{\varepsilon_{2} \rightarrow 0}\left(\frac{\left(-\varepsilon_{2}\right)^{2 / 3}}{2 / 3}-\frac{(-1)^{2 / 3}}{2 / 3}+\frac{\bar{y}^{2 / 3}}{1 / 3}-\frac{\varepsilon_{1}^{2 / 3}}{2 / 3}\right)=0 \text { si } \varepsilon_{1}=\varepsilon_{2} . \\
& =\sqrt[2]{(-1)^{2}}=\sqrt[3]{1}=1
\end{aligned}
$$

$$
\begin{aligned}
\text { Egemplo: } & \int_{-1}^{1} \frac{1}{x} d x
\end{aligned}=\lim _{\substack{\varepsilon_{1} \rightarrow 0 \\
\varepsilon_{2} \rightarrow 0}}\left(\int_{1}^{-\varepsilon_{2}} \frac{1}{x} d x+\int_{\varepsilon_{1}}^{1} \frac{1}{x} d x\right) \quad \int \frac{1}{x} d x=\log x+c,
$$

$\Rightarrow \int_{-1}^{1} \frac{1}{x} d x=0$ coms chalor principal.
Ejemplo. $\int_{-\infty}^{\infty} g(x) d x ; \quad g(x)=\frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}}$

$$
\begin{aligned}
& =\lim _{M \rightarrow \infty} \int_{-M}^{M} g(x) d x \text {. } \\
& =\sup _{M>0} \int_{-M}^{M} g(x) d x \Longleftrightarrow \exists C>0 \text { tal que } \int_{-N}^{M} g(x) d x \leqslant C \\
& \therefore \quad e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \underset{s x>0}{\longrightarrow} \quad e^{x} \geqslant \frac{x^{k}}{k!} \quad \forall k \geqslant 0 \\
& e^{-x^{2} / 2}=\frac{1}{e^{k / 2}} \leq \frac{1}{\frac{\left(x^{2}\right)^{k}}{k!}}=\frac{k!2^{k}}{x^{2 k}}
\end{aligned}
$$

$$
\begin{aligned}
& g(x)=g(-x) \\
& \int_{1}^{M} g(x) d x \leqslant k!2^{k} \int_{1}^{M} \frac{1}{x^{2 k}} d x \\
& \int x^{-2 k} d x=\frac{x^{2 k+1}}{-2 k+1}+c \\
& \leqslant k!2 k\left(\frac{1}{2 k-1}-\frac{M^{1-2 k}}{2 k-1}\right) \rightarrow \frac{k!2 k}{2 k-1} \text { cuando } M \rightarrow \infty
\end{aligned}
$$

Criterio de comparación.
$0 \leqslant f(x) \leqslant g(x)$ entonces
Si $\int_{0}^{\infty} g(x) d x$ converge $\Rightarrow \int_{0}^{\infty} f(x) d x^{\text {i }}$ también.

$$
\text { y } \quad 0 \leqslant \int_{0}^{\infty} f(x) d x \leqslant \int_{0}^{\infty} g(x) d x \text {. }
$$

Si $\int_{0}^{\infty} f(x) d x$ diverge $\Rightarrow \int_{0}^{\infty} g(x) d x$ diverge .
Explo $\int_{0}^{\infty} \frac{2 x+1}{1+x^{2}+x^{4}} d x$ i $\int_{0}^{\infty} \frac{2}{x^{3}} d x$

$$
\begin{aligned}
& f(x)=\frac{2 x+1}{1+x^{2}+x^{4}}\left\{\begin{array} { l }
{ \frac { f (x) } { g (x) } \rightarrow 1 \neq 0 \quad \text { auaudo } x \rightarrow \infty } \\
{ 1 - \varepsilon < \frac { f (x) } { x ^ { 4 } } = \frac { 2 } { x ^ { 3 } } }
\end{array} \left\{1+\varepsilon . \text { si } x \geqslant x_{0} .\right.\right. \\
& \\
& g(x)(1-\varepsilon)<f(x)<g(x)(1+\varepsilon) .
\end{aligned}
$$

Criterio de comparación por el cociente.

$$
\begin{aligned}
& f, g:[0,+\infty) \rightarrow \mathbb{R} \text { continuas. } f(x) \geqslant 0, g(x)>0 \quad \forall x \in[0,+\infty) . \\
& \text { si } \lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=l \in \mathbb{R} \quad g l \neq 0
\end{aligned}
$$

eutonces $\int_{\text {criteriode convergencia absoluta: }}^{\infty} f(x) d x$ converge siy nde si $\int_{\text {a }}^{\infty} g(x) d x$ convenge.
$\mathcal{L} \int_{0}^{\infty}|f(x)| d x$ convarge $\Longrightarrow \int_{0}^{\infty} f(x) d x$ conver g.
Egenplo: $\int_{-\infty}^{\infty} \frac{\operatorname{sen}(x)}{14 x^{2}} d x$

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{\operatorname{sen} x}{x} d x \text { converge } \\
& \int_{0}^{\infty}\left|\frac{\sin x}{x}\right| d x d \text { verge. }
\end{aligned}
$$

$$
\begin{aligned}
& \left|\frac{\operatorname{sen} x}{1+x^{2}}\right| \leqslant \frac{1}{1+x^{2}} \\
& \int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x \text { converge } \rightarrow \int_{-\infty}^{\infty}\left|\frac{\operatorname{sen} x}{1+x^{2}}\right| d x \text { converge } \\
& \Rightarrow \int_{0}^{\infty} \frac{\operatorname{sen} x}{1+x^{2}} d x \text { convege. }
\end{aligned}
$$

$$
\Gamma(x)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x \quad \text { converge } \forall x \geqslant 0
$$

funcion Gam

$$
\begin{aligned}
& \underbrace{\int_{0}^{1} x^{\alpha-1} e^{-x} d x}_{0}+\int_{1}^{\infty} x^{\alpha-1} d x \\
& \Gamma(1)
\end{aligned}=\int_{0}^{\infty} e^{\alpha-1} e^{-x} d x=1 .
$$

INTEGRALES DOBLES
Def. $f: D \rightarrow \mathbb{R}, D=[a, b] \times[c, d]=\left\{(x, y) \in \mathbb{R}^{2} / a \leqslant x \leqslant b, c \leqslant y \leqslant d\right\} \subseteq \mathbb{R}^{2}$

= volumen sobrela región D abajo del guáfico de f.
$=$ rolumen de $\left\{(x, y, z) \in \mathbb{R}^{3} / 0 \leq z \leqslant f(x, y)\right\}$

- Una pantición π del rectiangulo D quedadetermi mada perdos particiones: $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b$ Partición de $[a, b]$
$c=y_{0}<y_{1}<y_{2}<\cdots<y_{m-1}<y_{m}=d \quad$ Partición de [c,d]
$D_{i j}=\left[X_{i-1}, x_{1}\right] \times\left[y_{j-1}, Y_{j}\right], \quad D=\bigcup_{i=1}^{n} \bigcup_{j=1}^{m} D_{i j}$ "Unión casi disjunta" $D_{i j} \cap D_{k e}$ tiene área O si $(i, j) \neq(k, l)$.
- Suporgamos que $f: D \rightarrow \mathbb{R}$ es acotada:

$$
m_{i j}=\inf f(x, y),(x, y) \in D_{i j} \quad ; M_{i j}=\operatorname{Sup} f(x, y),(x, y) \in D_{i j}
$$

Definimós las sumas de Riemann pars la partición Π

$$
\begin{aligned}
& \cdot I_{\pi}(f)=\sum_{i=1}^{n} \sum_{j=1}^{m} m_{i j} \text { area }\left(D_{i j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} m_{i j} \cdot \Delta x_{i} \Delta y_{j} \text { (suma unferier) } \\
& \cdot S_{\pi}(f)=\sum_{i=1}^{m} \sum_{j=1}^{m} M_{i j} \text { area }(D i j)=\sum_{i=1}^{m} \sum_{i=1}^{m} M_{i j} \Delta x_{i} \Delta y_{j} \text { (Suma superior) } \\
& \text { area }\left(D_{i j}\right)=\Delta x_{i} \cdot \Delta y_{j} ; \quad \Delta x_{i}=x_{i}-x_{i-1} \\
& \qquad y_{j}=y_{j}-y_{j-1} \\
& \left.I=\iint f(x, y) d x d y=\sup \left\{S_{\pi}(f) / \pi \text { panticiónde } D\right\} \text { (integral inferior de fen } D\right) \text {) } \\
& S \bar{\int}=\int f(x, y) d x d y=\operatorname{lnf}\left\{S_{\pi}(f) / \pi \text { particion de } D\right\} \text { (integial superior de fen } D \text {). }
\end{aligned}
$$

Def: fes integrable en el sentidode Riemann en D si $I=S$.
En ese caso, tu valar comin se avota por: $\iint_{D} f(x, y) d x d y$.

TEOREMA: $D=[a, b] \times[c, d] \quad f: D \longrightarrow \mathbb{R}$
Lif es continua en $D \Rightarrow$ fes integrable en D.
TeOrema de Fubini: $D=[a, b] \times[c, d]: f: D \rightarrow \mathbb{R}$ continua.

$$
\begin{aligned}
\iint_{D} f(x, y) d x d y & =\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x \\
& =\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y
\end{aligned}
$$

Ejemplo: $I=\iint_{D} x^{3} y^{2} d x d y, \quad D=[1,2] \times[2,3]$

$$
\begin{aligned}
& I=\int_{1}^{2}\left[\int_{2}^{3} x^{3} y^{2} d y\right] d x \\
& \int_{2}^{3} x^{3} y^{2} d y=x^{3} \int_{2}^{3} y^{2} d y=\left.x^{3} \cdot \frac{y^{3}}{3}\right|_{2} ^{3}=\frac{x^{3}}{3}\left(3^{3}-2^{3}\right)=\frac{19}{3} x^{3} \\
& \int_{1}^{2} \frac{19}{3} x^{3} d x=\frac{19}{3} \int_{1}^{2} x^{3} d x=\left.\frac{19}{3} \cdot \frac{x^{4}}{4}\right|_{1} ^{2}=\frac{19}{12}\left(2^{4}-1^{4}\right)=\frac{19 \cdot 15}{12} .
\end{aligned}
$$

obs: $D=[a, b] \times[c, d]$

$$
\iint_{D} f(x) \cdot g(y) d x d y=\int_{a}^{b}\left[\int_{c}^{d} f(x) \cdot g(y) \cdot d y\right] d x
$$

Caso especial de una función de variables separadas.

$$
\begin{aligned}
& =\int_{a}^{b} f(x)\left[\int_{c}^{d} g(y) d y\right] d x \\
& =\left(\int_{a}^{b} f(x) d x\right) \cdot\left(\int_{c}^{d} g(y) d y\right)
\end{aligned}
$$

Integrales triples
Def. $D=[a, b] \times[c, d] \times[e, f]=\left\{(x, y, z) \in \mathbb{R}^{3} / a \leqslant x \leqslant b, c \leqslant y \leqslant d, e \leqslant z \leqslant f\right\}$

$$
\iiint_{D} f(x, y, z) d x d y d z \Rightarrow \text { Integral triple. }
$$

TEOREMA DE FUBIN: $D=[a, b] \times[c, d] \times[e, f]$

$$
\begin{aligned}
\iiint_{D} F(x, y, z) d x d y d z & =\int_{a}^{b}\left[\int_{c}^{d}\left[\int_{e}^{f} F(x, y, z) d z\right] d y\right] d x \\
& =\int_{e}^{f}\left[\int_{c}^{d}\left[\int_{a}^{b} F(x, y, z) d x\right] d y\right] d z
\end{aligned}
$$

... Y asi, puedo hacen n! combinaciones si tengo in variables difecentes.

Sea $D \subseteq \mathbb{R}^{2}$ una región compacta (cenada y acotada)
Sea D̃an rectánugula de lados paralelos alos ejes/D$\subseteq \widetilde{D}$

$$
\iint_{D} f(x, y) d x d y=\iint_{D} \tilde{f}(x, y)=d x d y
$$

$$
\tilde{f}(x, y)=\left\{\begin{array}{cc}
f(x, y) & \text { si }(x, y) \in D \\
0 & \text { si }(x, y) \notin \bar{D}
\end{array}\right.
$$

Def: si \widetilde{D} es un rectängulo $y C \subseteq \widetilde{D}$ es un conjunto, C tieve área O si pana cada $\varepsilon>0$ puedo conseguin una partición de \widetilde{D} tol que la suma de las áreas de los rectóngulas en D que cortan a C es menor que ε.

IEOREMA: El griffies de una función continua tieve ánear 0 .
Def: $D=\left\{(x, y) \in \mathbb{R}^{2} / a \leqslant x \leqslant b, g_{1}(x) \leqslant y \leqslant g_{2}(x)\right\}$ regioù de tipoI

$$
\int_{g_{1}}^{g_{2}} \iint_{b} f(x, y) d x d y=\int_{a}^{b}\left[\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y\right] d x \text {. }
$$

$D=\left\{(x, 4) \in \mathbb{R}^{2} / c \leqslant y \leqslant d, h_{1}(y) \leqslant x \leqslant h_{2}(y)\right\}$. region de tipo II

$$
\xrightarrow{d f} \iint_{D} f(x, y) d x d y=\iint_{c_{1}}^{d}\left[\int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x\right] d y .
$$

Ejemplo:

$$
\begin{aligned}
& D=\left\{(x, 4) \in \mathbb{R}^{2} / x^{2}+y^{2} \leqslant R^{2}\right\}=\left\{(x, y) \in \mathbb{R}^{2} /-R \leq x \leq R ;-\sqrt{R^{2}-x^{2}} \leq y \leq \sqrt{R^{2}-x^{2}}\right\} \\
& f(x, y)=h\left(1-\frac{\sqrt{x^{2}+y^{2}}}{R}\right) \\
& \iint_{D} f(x, y) d x d y=\operatorname{vol}(\Delta) ; z=h\left(1-\frac{r}{R}\right) ; r=\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

$$
\left.\operatorname{ard}(\Delta)=\int_{-R}^{R} \int_{-\sqrt{R^{2}-x^{2}}}^{\sqrt{R^{2}-x^{2}}} h \cdot\left(1-\frac{\sqrt{x^{2}+y^{2}}}{R}\right) d y\right] d x .
$$

Def: $D=\left\{(x, y, z) \in \mathbb{R}^{3} / a \leqslant x \leqslant b, g_{1}(x) \leqslant y \leqslant g_{2}(x), h_{1}(x, y) \leqslant z \leqslant h_{2}(x, y)\right\}$

$$
\iiint_{D} f(x, y, z) d x d y d z=\int_{a}^{b}\left[\int_{g_{1}(x)}^{g_{2}(x)}\left[\int_{h_{1}(x, y)}^{h_{2}(x, y)} f(x, y, z) d z\right] d y\right] d x
$$

CAMBIO DE CCORDENADAS.

$T: D^{*} \rightarrow D$, biyectiva C^{*} con inversa C^{1}

$$
D_{1} D^{*} \subseteq \mathbb{R}^{2} ; \quad(x, y)=T(u, v)
$$

$$
\iint_{D} f(x, y) d x d y=\iint_{D^{*}} f(T(\mu, v))|J(\mu, v)| d u d v
$$

$I(\mu, v)=\operatorname{det}[D T(\mu, v)] \rightarrow$ Jacobiano $\operatorname{de} T$

$$
\begin{aligned}
& T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \text { limeal } \\
& \operatorname{area}(T(R))=\operatorname{area}(R) \cdot|\operatorname{det}(T)|
\end{aligned}
$$

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \operatorname{sen} \theta \\
& D=\left\{(x, y) \in \mathbb{R}^{2} / 0<x^{2}+y^{2} \leqslant R\right\} \\
& D^{*}=\{(r, \theta) / 0<r \leqslant R, \quad 0 \leqslant \theta<2 \pi\}
\end{aligned}
$$

$T(r, \theta)=(r \cos \theta, r \operatorname{sen} \theta)$

$$
J(r, \theta)=r
$$

$$
\iint_{b} f(x, y) d x d y=\iint_{D^{*}} f(r \cos \theta, r \operatorname{sen} \theta) r \cdot d r d \theta
$$

Cambio de coordenadas
polar polares.

$$
\begin{aligned}
& \text { (1) } D=T(R) f(x, y)=1, D^{*}=R \\
& \operatorname{vol}(D)=\iint_{D} 1 d x d y=\iint_{D^{*}} 1|\operatorname{det}(T)| d u d v=\operatorname{vol}(R) \cdot|\operatorname{det}(T)| \\
& \operatorname{vot}(\Delta)=\int_{0}^{R}\left[\int_{0}^{2 \pi} h\left(1-\frac{r}{R}\right) r d \theta\right] d r \\
&=2 \pi h \int_{0}^{R}\left(1-\frac{r}{R}\right)^{2} r d r \\
&=2 \pi h\left[\int_{0}^{R} r d r-\int_{0}^{R} \frac{r^{2}}{R} d r\right] \\
&=2 \pi h\left(\frac{R^{2}}{2}-\frac{1}{R} \cdot \frac{R^{3}}{3}\right)=2 \pi h R^{2}\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{\pi h R^{2}}{3}
\end{aligned}
$$

$$
\begin{array}{ll}
r=\sqrt{x^{2}+y^{2}} & x=r \cos \theta \\
& y=r \operatorname{sen} \theta \\
& z=\widetilde{z}
\end{array}
$$

$$
D=\left\{(x, y, z) / x^{z=z}, \quad x^{2}+y^{2} \leqslant R^{2}, 0 \leq z \leqslant h\right\}
$$

$$
D^{*}=\{(r, \theta, z) / 0 \leq r \leq R, 0 \leq \theta \leq 2 \pi, 0 \leq \tilde{z} \leq h\}
$$

$$
I=\left|\begin{array}{lll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial z} & \frac{\partial z}{\partial z}
\end{array}\right|=\left|\begin{array}{ccc}
\cos \theta & -r \operatorname{sen} \theta & 0 \\
\operatorname{sen} \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right|=(-1)^{3+3}\left|\begin{array}{cc}
\cos \theta & -r \operatorname{sen} \theta \\
\operatorname{sen} \theta & r \cos \theta
\end{array}\right|=r
$$

$$
\iiint_{D=\theta} f(x, y, z) d x d y d z=\iiint_{D^{*}=I} f(r \cos \theta, r \operatorname{sen} \theta, z) r d r d \theta d z
$$

cambio de coordenadas cilíndricas.

$$
\begin{align*}
& \operatorname{vol}(\Delta)=\iiint_{D=\Delta} 1 d x d y d z=\iiint_{D^{*}} 1 r d r=W \\
& D^{*}=\{(r, \theta, z) / 0 \leqslant r \leqslant R, \quad 0 \leqslant \theta \leqslant 2 \pi, \quad 0 \leqslant z \leqslant g(r)\}
\end{align*}
$$

$$
\begin{aligned}
* & \left.=\int_{0}^{R}\left[\int_{0}^{2 \pi}\left[\int_{0}^{g(r)} r d z\right] d \theta\right] d r\right] \\
& =\int_{0}^{R}\left[\int_{0}^{2 \pi} r g(r) d \theta\right] d r \\
& =2 \pi \int_{0}^{R} r \cdot g(r) d r=2 \pi \int_{0}^{R} r\left(1-\frac{r}{R}\right) d r .
\end{aligned}
$$

CAMBIO DEVARIABLES
$D \subseteq \mathbb{R}^{2}$

$$
(x, y)=T(\mu, v)
$$

Ieorema del cambio de variables.
T biyectiva euthe D y D^{*}, $T M T^{-1}$ de clase C^{1} (salvo quizàs sacándole un conjuito de "órea"O a Dy D^{*})

$$
\begin{aligned}
& J(\mu, v)=\operatorname{det}[D T(\mu, v)] \\
& \iint_{D} f(x, y) d x d y=\iint_{D^{*}} f(T(\mu, v))|J(\mu, v)| d \mu d v
\end{aligned}
$$

- $\mathcal{L} T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ es una haus forruación lineal:
area $(T(\square))=\operatorname{area}(\square) \cdot \operatorname{det}(T)$

$$
\square=\left\{x \in \mathbb{R}^{2} /\left(x_{i}, x_{2}\right) / 0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 1\right\}
$$

$$
=\left\{x \in \mathbb{R}^{2} / x=x_{1} \cdot e_{1}+x_{2} \cdot e_{2}, 0 \leqslant x_{1} \leq 1,0 \leq x_{2} \leq 1\right\}
$$

$$
\begin{aligned}
\text { área }(\Delta \lambda) & =\text { base } \times \text { altuna } \\
& =\left\|v_{1}\right\| \cdot\left\|v_{2}\right\| \cdot \operatorname{sen} \theta \\
& \text { seu } \theta=\frac{\text { alfura }}{\|\left|v_{2}\right|} \\
& v_{1}=T\left(e_{1}\right) \\
\left.x_{2} \leqslant 1\right\} \quad & v_{2}=T\left(e_{2}\right)
\end{aligned}
$$

$$
x=x_{1} \cdot e_{1}+x_{2} e_{2}
$$

$$
\begin{aligned}
& T(x)=x_{1} T\left(l_{1}\right)+x_{2} T\left(l_{2}\right)=x_{1} v_{1}+x_{2} \cdot v_{2} \\
& T(I)=\left\{x \in \mathbb{R}^{2} / x=x_{1} v_{1}+x_{2} v_{2} / 0 \leqslant x_{1} \leqslant 1,0 \leqslant x_{2} \leqslant 1\right\} \\
& \left\langle v_{1}, v_{2}\right\rangle=\left\|v_{1}\right\| \cdot\left\|v_{2}\right\| \cdot \cos \theta \\
& \left\langle v_{1}, v_{2}\right\rangle^{2}=\left\|v_{1}\right\|^{2} \cdot\left\|v_{2}\right\|^{2} \cdot \cos ^{2} \theta \\
& \operatorname{area}(\nabla)^{2}=\left\|v_{1}\right\|^{2} \cdot\left\|v_{2}\right\|^{2} \cdot \operatorname{sen}^{2} \theta=\left\|v_{1}\right\|^{2}\left\|v_{2}\right\|^{2}\left(1-\cos ^{2} \theta\right) \\
& =\left\|v_{1}\right\|_{K_{2}^{2}}\left\|v_{2}\right\|^{2} \cdot\left(1-\frac{\left\langle v_{1}, v_{2}\right\rangle^{2}}{\left\|v_{1}\right\|^{2}\left\|v_{2}\right\|^{2}}\right) \\
& \operatorname{area}(I)^{2}=\left\|v_{1}\right\|^{2}\left\|v_{2}\right\|^{2}-\left\langle v_{1}, v_{2}\right\rangle^{2} \\
& v_{1}=\binom{v_{11}}{v_{21}} ; v_{2}=\binom{v_{12}}{v_{22}} ;[T]=\left(\begin{array}{ll}
v_{11} & v_{12} \\
v_{21} & v_{22}
\end{array}\right) \\
& \operatorname{area}(\square 1)^{2}=\left(v_{11}{ }^{2}+v_{21}^{2}\right) \cdot\left(v_{12}^{2}+v_{22}^{2}\right)-\left(v_{11} v_{12}+v_{21} v_{22}\right)^{2} \\
& =v_{11}^{2} v_{12}^{2}+v_{11}^{2} v_{22}^{2}+v_{21}^{2} v_{12}^{2}+v_{21}^{2} v_{22}^{2}-\left[v_{11}^{2} v_{12}^{2}+2 v_{11} v_{12} v_{21} v_{22}+v_{21} v_{22}\right] \text {. } \\
& =v_{11}^{2} v_{22}^{2}+v_{21}^{2} v_{12}^{2}-2 v_{11} v_{12} v_{21} v_{22}=\left(v_{11} v_{22}-v_{21} v_{12}\right)^{2}=(\operatorname{det}[T])^{2} \Rightarrow \begin{array}{l}
\operatorname{area}(\tau) \\
=|\operatorname{det}[T]|
\end{array}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
x=r \operatorname{sen} \varphi \cdot \cos \theta \\
y=r \operatorname{sen} \varphi \cdot \operatorname{sen} \theta \\
z=r \cos \varphi
\end{array}\right.
$$

$$
r=\sqrt{x^{2}+y^{2}+z^{2}}=\|(x, y, z)\|
$$

$$
d=\sqrt{x^{2}+y^{2}}, \quad, \quad x=d \cos \theta
$$

$$
J=\left|\begin{array}{c|cc}
\operatorname{sen} \varphi \cos \theta & r \operatorname{sen} \varphi(-\operatorname{sen} \theta) & r \cos \varphi \cdot \cos \theta \\
\operatorname{sen} \varphi \cdot \operatorname{sen} \theta & r \cdot \operatorname{sen} \varphi \cos \theta & r \cos \varphi \operatorname{sen} \theta \\
\cos \varphi & 0 & r(-\operatorname{sen} \varphi)
\end{array}\right|
$$

$$
\begin{aligned}
J & =r^{2} \operatorname{sen} \varphi \cdot\left[\begin{array}{cc}
(-1)^{1+3} \cos \varphi \cdot\left|\begin{array}{cc}
-\operatorname{sen} \theta & \cos \varphi \cdot \cos \theta \\
\cos \theta & \cos \varphi \operatorname{sen} \theta
\end{array}\right|+(-1)^{3+3} \cdot(-\operatorname{sen} \varphi) \cdot\left[\begin{array}{cc}
\operatorname{sen} \varphi \cos \theta & -\operatorname{sen} \theta \\
\operatorname{sen} \varphi \cdot \operatorname{sen} \theta & \cos \theta
\end{array}\right] \\
J \operatorname{Jen} & =r^{2} \operatorname{sen} \varphi \cdot\left[\begin{array}{ll}
\left.\left.\cos ^{2} \varphi\left[\begin{array}{cc}
-\operatorname{sen} \theta & \cos \theta \\
\cos \theta & \operatorname{sen} \theta
\end{array}\right]+\left(-\operatorname{sen}^{2} \varphi\right) \right\rvert\, \begin{array}{cc}
\cos \theta & -\operatorname{sen} \theta \\
\operatorname{sen} \theta & \cos \theta
\end{array}\right]
\end{array}\right] \\
& =-r^{2} \operatorname{sen} \varphi \cdot\left(\cos ^{2} \varphi+\operatorname{sen}^{2} \varphi\right) \\
& =-r^{2} \operatorname{sen} \varphi
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& T(r, \theta, \varphi)=(r \cdot \operatorname{sen} \varphi \cdot \cos \theta, r \operatorname{sen} \varphi \cdot \operatorname{sen} \theta, r \cdot \cos \varphi) \\
& D^{*}=\{(r, \theta, \varphi) / 0 \leqslant r \leqslant R, 0 \leqslant \theta \leqslant 2 \pi, 0 \leqslant \varphi \leqslant \pi\} \\
& \operatorname{vol}(\theta)=\iiint_{D} 1 d x d y d z \text {. } \\
& \theta=D=\left\{(x, y, z) \in \mathbb{R}^{3} / x^{2}+y^{2}+z^{2} \leqslant R^{2}\right\} \\
& \operatorname{vod}(\theta)=\iiint_{D^{*}} r^{2} \operatorname{sen} \varphi d r d \theta d \varphi \\
& \operatorname{vol}(\theta)=\pi_{0}^{R}\left[\int_{0}^{2 \pi}\left[\int_{0}^{\pi} r^{2} \operatorname{sen} \varphi d \varphi\right] d \theta\right] d r \\
& V(R)=\lim _{\varepsilon \rightarrow 0} \frac{V(R+\varepsilon)-V(R)}{\varepsilon} \\
& \Rightarrow \text { Area de la esfera de radio R } \\
& =2 \pi\left(\int_{0}^{R} r^{2} d r\right) \cdot\left(\int_{0}^{\pi} \operatorname{sen} \varphi d \varphi\right) \\
& =2 \pi \cdot \frac{R^{3}}{3} \cdot 2=\frac{4}{3} \pi R^{3} \\
& \int_{0}^{\pi} \operatorname{sen} \varphi d \varphi=-\left.\cos \varphi\right|_{0} ^{\pi} \\
& =-\cos \pi+\cos 0 \\
& =1+1=2 \\
& \left.\int_{-\infty}^{\infty} e^{-x^{2} / 2} d x=\sqrt{2 \pi} \quad 1 \quad \int e^{-\left(x^{2}+y^{2}\right) / 2} d x d y\right) \text {. } \\
& =\lim _{R \rightarrow+\infty} \iint_{C_{R}} e^{-\left(x^{2}+y^{2}\right) / 2} d x d y=\left(\int_{-\infty}^{\infty} e^{-x^{2} / 2} d x\right)^{2} \\
& C_{R}=\{(x, y) /|x| \leqslant R,|y| \leqslant R\} \\
& \iint_{C_{R}} e^{-\left(x^{2}+y^{2}\right) / 2} d x d y=\iint_{C_{R}} e^{-x^{2} / 2} e^{-y / 2} d x d y= \\
& =\left(\int_{-R}^{R} e^{-x^{2} / 2} d x\right)\left(\int_{R}^{R} e^{-y^{2} / 2} d y\right)=\left(\int_{-R}^{R} e^{-x / 2} d x\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
I_{2} & =\lim _{R \rightarrow \infty} \iint_{D_{R}} e^{-\left(x^{2}+y^{2}\right) / 2} d x d y \\
& \left(-s_{L_{R}>\infty}\right) \\
& =\lim _{R \rightarrow \infty} \int_{D_{R}} e^{-r^{2} / 2} r d r d \theta \\
& =\lim _{R \rightarrow \infty} 2 \pi \int_{0}^{R} e^{-r^{2} / 2} r d r . \quad u=\frac{r^{2}}{2}, \frac{d u}{d r}=2 r \\
& =\lim _{R \rightarrow+\infty} 2 \pi \int_{0}^{R^{2} / 2} e^{-\mu} d u \quad \\
& =2 \pi \int_{0}^{\infty} e^{-u} d \mu=2 \pi
\end{aligned}
$$

$$
\Gamma(p)=\int_{0}^{\infty} x^{p-1} e^{-x} d x \quad(p>0)
$$

$$
\Gamma(P)=(P-1)!\text { si } p \in \mathbb{N} \text {. }
$$

$$
\Gamma(P+1)=P \Gamma(P)
$$

$$
\begin{aligned}
& \Gamma(1 / 2)=\int_{0}^{\infty} x^{-1 / 2} e^{-x} d x=\int_{0}^{\infty} \sqrt{2} e^{-u^{2} / 2} d \mu=\sqrt{2} \int_{0}^{\infty} e^{-\mu^{2} / 2} d u=\sqrt{2} \frac{\sqrt{2 \pi}}{2}=\frac{\sqrt{2} \sqrt{2}}{2} \sqrt{\pi}=\sqrt{\pi} \\
& x=\frac{u^{2}}{2} \frac{d x}{d x}=\mu \\
& \sqrt{2 x}=\mu \quad \frac{d u}{d x}=\frac{1}{2 \sqrt{2 x}} 2=\frac{1}{\sqrt{2 x}}=\frac{1}{\sqrt{2}} x^{1 / 2} . \\
& \Gamma(1 / 2)=\sqrt{\pi}
\end{aligned}
$$

$B(p, q)=\int_{0}^{1} x^{p-1}(1-x)^{q-1} d x \Rightarrow$ Integral beto de Eulec.

$$
\int_{0}^{1 / 2} x_{1 / 2<1-x \leq 1}^{p-1}(1-x)^{q-1} d x+\int_{1 / 2}^{1} x^{p-1}(1-x)^{q-1} d x
$$

comprocon $\int_{0}^{1 / x^{2-1} d x} \quad$ comparo eon $\int_{1 / 2}^{1}(1-x)^{5-1} d x$ $(1-x)^{q-1}$ usacoradar convergets $P>0$.
efemplo: $B\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{\Gamma(1 / 2) \Gamma(1 / 2)}{\Gamma(1)=1}=\Gamma(1 / 2)^{2}$

$$
\begin{aligned}
& B\left(\frac{1}{2}, \frac{1}{2}\right)=\int_{0}^{1} x^{-1 / 2}(1-x)^{-1 / 2} d x=\int_{0}^{1} \frac{1}{\mu}\left(1-\mu^{2}\right)^{-1 / 2} 2 \mu d \mu
\end{aligned}=2 \int_{0}^{1} \frac{1}{\sqrt{1-\mu^{2}}} d \mu . ~ \begin{aligned}
& x=\mu^{2} \\
& \frac{d x}{d \mu}=2 \mu=2(\operatorname{arcsen} 1-\operatorname{arcsen} 0) .=\pi
\end{aligned}
$$

$$
\mu=x^{1 / 2}
$$

$$
\nabla\left(\frac{1}{2}\right)^{2}=\pi
$$

$$
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} .
$$

flaxcte $x^{p-1} e^{-\alpha x}$

$$
\begin{aligned}
& \Gamma(p) \cdot \Gamma(q)=\left(\int_{e}^{\infty} x^{p-1} \cdot e^{-x} d x\right) \cdot\left(\int_{0}^{\infty} y^{p-1} e^{-y} d y\right) \\
& =\iint_{D} x^{p-1} \cdot y^{q-1} \cdot e^{-(x+y)} d x d y, \quad D=\left\{(x, y) \in \mathbb{R}^{2} / x>0, y>0\right\} \\
& =\iint_{D^{*}}(\mu v)^{p-1}[\mu(1-v)]^{q-1} \cdot e^{-\mu} \mu d u d v \text {. } \\
& \left\{\begin{array}{l}
\mu=x+y \\
v=\frac{x}{x+y}
\end{array}\right. \\
& v(x+y)=x \\
& D^{*}=\{(u, v) / u>0,0<v<1\} \\
& \begin{cases}x=u \cdot v & y=\mu-x \\
y=\mu(1-v) & y=\mu-\mu v\end{cases} \\
& J=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{d y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
v & \mu \\
1-v & -u
\end{array}\right| \\
& =v(-\mu)-\mu(1-v) \\
& =-v \cdot \mu-\mu+\mu \cdot v=-\mu \\
& \Gamma(p) \cdot \Gamma(q)=\int_{0}^{\infty}\left[\int_{0}^{1} \mu^{p+q-1} v^{p-1}(1-v)^{q-1} e^{-\mu} d v\right] d \mu \\
& =\left(\int_{0}^{\infty} \mu^{p+q-1} e^{-u} d \mu\right) \cdot\left(\int_{0}^{1} v^{p-1}(1-v)^{q-1} d v\right) \\
& =\Gamma(p+q) \cdot B(p, q) \\
& B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}
\end{aligned}
$$

