!'- XML

June 10, 2014 Base de Datos 1




Structured, Semistructured,
and Unstructured Data

= Structured data

= Represented in a strict format

« Example: information stored in databases
= Semistructured data

« Has a certain structure

= Not all information collected will have
identical structure




Structured, Semistructured,
and Unstructured Data (cont'd.)

= Schema information mixed in with data
values

= Self-describing data

= May be displayed as a directed graph

. Labels or tags on directed edges represent:
Schema names
Names of attributes
Object types (or entity types or classes)
Relationships




Structured, Semistructured,
and Unstructured Data (cont'd.)

Company projects Figure 12.1

P Representing

Project .- \\\ Project semistructured data
- . as a graph.
/./'” \-\\x
}ff ““1
//f"_"'!-.'-;i;-\‘"x__\_ HJ.’,. . 8
A \ e -~ .
// f Y \\_ -

/ \ \ .
/ ! Y —

! - -
h;ry/f\-/umber,‘ Lu::cam:-n"‘k Worker ™. Worker ™

y 1 o~
. * » ..
‘Product X' 1 ‘Bellaire’ P ,f:_f I."'n I.“" M"::\\
~ ] g':-l I"l ,-" . k.'\ \.\. -,
55":.)_,» XL,;L':J_ ;‘f Hours', Sen / r”"‘1—"‘-_ Hnurl“x.

TV LTV S

123458789 ‘Smith’ 325 '435435435' 'JuyL:H' 20,0




Structured, Semistructured,
and Unstructured Data (cont'd.)

= Unstructured data

= Limited indication of the of data document
that contains information embedded within it

= HTML tag
= Text that appears between angled brackets:

P

= End tag
« Tag with a slash: </...>




* Introduction

XML: Extensible Markup Language
Defined by the WWW Consortium (W3C)

Derived from SGML (Standard Generalized Markup
Language), but simpler to use than SGML

Documents have tags giving extra information about
sections of the document

« E.g. <title> XML </title> <slide> Introduction
...</slide>

Extensible, unlike HTML

= Users can add new tags, and separately specify how
the tag should be handled for display




XML Introduction (Cont.)

The ability to specify new tags, and to create nested tag structures make
XML a great way to exchange data, not just documents.

= Much of the use of XML has been in data exchange applications, not as
a replacement for HTML
Tags make data (relatively) self-documenting
= E.Q.
<university>
<department>
<dept _name> Comp. Sci. </dept_name>
<building> Taylor </building>
<budget> 100000 </budget>
</department>
<course>
<course_id> CS-101 </course_id>
<title> Intro. to Computer Science </title>
<dept_name> Comp. Sci </dept_name>
<credits> 4 </credits>
</course>




XML: Motivation

= Datainterchangeis critical in today’s networked world
= Examples:
= Banking: funds transfer
= Order processing (especially inter-company orders)
= Scientific data
Chemistry: ChemML, ...
Genetics: BSML (Bio-Sequence Markup Language), ...

= Paper flow of information between organizations is being replaced
by electronic flow of information
s Each application area has its own set of standards for representing
information

= XML has become the basis for all new generation data interchange
formats




XML Motivation (Cont.)

Earlier generation formats were based on plain text with line headers
indicating the meaning of fields

= Similar in concept to email headers
= Does not allow for nested structures, no standard “type” language
= Tied too closely to low level document structure (lines, spaces, etc)
s Each XML based standard defines what are valid elements, using
=« XML type specification languages to specify the syntax
= DTD (Document Type Descriptors)
= XML Schema
= Plus textual descriptions of the semantics
= XML allows new tags to be defined as required
= However, this may be constrained by DTDs

= A wide variety of tools is available for parsing, browsing and querying XML
documents/data




Comparison with Relational Data

= Inefficient: tags, which in effect represent
schema information, are repeated

= Better than relational tuples as a data-
exchange format

= Unlike relational tuples, XML data is self-
documenting due to presence of tags

= Non-rigid format: tags can be added
= Allows nested structures

= Wide acceptance, not only in database
systems, but also in browsers, tools, and
applications




XML Documents, DTD, and XML
Schema

= Well formed

=« Has XML declaration

. Indicates version of XML being used as well as
any other relevant attributes
= Every element must matching pair of start
and end tags

. Within start and end tags of parent element
= DOM (Document Object Model)

= Manipulate resulting tree representation
corresponding to a well-formed XML
document




XML Documents, DTD, and XML
_* Schema (cont'd.)

= SAX (Simple API for XML)

= Processing of XML documents on the fly

. Notifies processing program through callbacks
whenever a start or end tag is encountered

= Makes it easier to process large documents
= Allows for streaming




XML Documents, DTD, and XML
Schema (cont'd.)

n Valld
= Document must be well formed

= Document must follow a particular schema

= Start and end tag pairs must follow structure
specified in separate XML DTD (Document
Type Definition) file or XML schema file




Structure of XML Data

Tag: label for a section of data

Element: section of data beginning with <fagname> and ending
with matching </ tagname>

Elements must be properly nested
= Proper nesting

« <course> .. <title> .... </title> </course>
= Improper nesting
« <course> .. <title> .... </course> </title>

= Formally: every start tag must have a unique matching end
tag, thatis in the context of the same parent element.

Every document must have a single top-level element




Example of Nested Elements

<purchase_order>
<identifier> P-101 </identifier>
<purchaser> .... </purchaser>
<itemlist>
<item>
<identifier> RS1 </identifier>
<description> Atom powered rocket sled </description>
<quantity> 2 </quantity>
<price> 199.95 </price>
</item>
<item>
<identifier> SG2 </identifier>
<description> Superb glue </description>
<quantity> 1 </quantity>
<unit-of-measure> liter </unit-of-measure>
<price> 29.95 </price>

</item>
e tingia




Motivation for Nesting

= Nesting of data is useful in data transfer

= Example: elementsrepresenting /itern nested within an itemlist
element

= Nesting is not supported, or discouraged, in relational databases

= With multiple orders, customer name and address are stored
redundantly

= normalization replaces nested structuresin each order by foreign
key into table storing customer name and address information
= Nesting is supported in object-relational databases
= But nesting is appropriate when transferring data

= External application does not have direct access to data
referenced by a foreign key




Attributes

lements can have attributes

<course course_id= "CS-101">
<title> Intro. to Computer Science</title>
<dept name> Comp. Sci. </dept name>
<credits> 4 </credits>

</course>

= Attributes are specified by name=value pairs inside the
starting tag of an element

= An element may have several attributes, but each attribute
name can only occur once

<course course_id = "CS-101" credits="4">




Namespaces

XML data has to be exchanged between organizations

Same tag name may have different meaning in different organizations,
causing confusion on exchanged documents

Specifying a unique string as an element name avoids confusion
Better solution: use unigue-name:element-name

Avoid using long unique names all over document by using XML
Namespaces

<university xmlns:yale="http://www.yale.edu”>

<yale:course> |
<yale:course id>CS-101 </yale:course_id>
<yale:title> Intro. to Computer Science</yale:title>
<yale:dept name> Comp. Sci. </yale:dept_name>
<yale:credits> 4 </yale:credits>

</yale:course>

</university>




XML Document Schema

Database schemas constrain what information can be stored, and
the data types of stored values

XML documents are not required to have an associated schema
However, schemas are very important for XML data exchange

= Otherwise, a site cannot automatically interpret data received
from another site

Two mechanisms for specifying XML schema
= DocumentType Definition (DTD)
= Widely used
= XML Schema

= Newer, increasing use




XML Schema

XML Schema is a more sophisticated schema language which
addresses the drawbacks of DTDs. Supports

= Typing of values
= E.g. integer, string, etc
= Also, constraints on min/max values
= User-defined, complex types
= Many more features, including
= uniqueness and foreign key constraints, inheritance
XML Schema is itself specified in XML syntax, unlike DTDs
= More-standard representation, but verbose
XML Scheme is integrated with namespaces
BUT: XML Schema is significantly more complicated than DTDs.




More features of XML Schema

Attributes specified by xs:attribute tag:
» <xs:attribute name = “dept_name"/>

» adding the attribute use = "required” means value must be
specified
s Key constraint: "department names form a key for department

elements under the root university element:

<xs:key name = “deptKey">
<xs:selector xpath = “/university/department”/>
<xs:field xpath = “dept_name”/>

<\xs:key>

s Foreign key constraintfrom course to department:

<xs:keyref name = “courseDeptFKey" refer="deptKey”>
<xs:selector xpath = “/university/course”/>
<xs:field xpath = “dept_name”/>

<\xs:keyref>




* The xs:element Element

s Has attributes:

;. hame = the tag-name of the element being
defined.

o.  type = the type of the element.
+ Could be an XML-Schema type, e.g., xs:string.

+ Or the name of a type defined in the document
itself,




* : XS:element
<Xs:element name = "NAME”
type = ”"xs:string” />

= Describes elements such as
<NAME>Joe’s Bar</NAME>




_* Complex Types

= T0 describe elements that consist of
subelements, we use xs:complexType.

= Attribute name gives a nhame to the type.

= Typical subelement of a complex type is
xs:sequence, which itself has a sequence of
xs:element subelements.

s Use minOccurs and maxOccurs attributes to
control the number of occurrences of an
Xs:element.

24




xample: a Type for Beers

<xs:complexType name = "beerType”>
<XSs:sedquence>

Exactly one
<Xs:element name = "NAME"” occurrence
type = "Xs:striggﬁff”ffff \\
minOccurs = 17 maxOccurs = . 7| />
<xXs:element name = "PRICE"”
type = "xs:float”
minOccurs = ”0” maxOccurs = "1" />

</Xs:sequence>

</xs:complexType>




xample: a Type for Bars

<xs:complexType name = "barType”>
<XS:sequence>
<xXs:element name = "NAME"”
type = "xs:string”
minOccurs = ”1” maxOccurs = "1" />
<xXs:element name = "BEER"”

type = "beerType”

minOccurs = "0” maxOccurs =
unbounded” />

</Xs:sequence>
</xXs:complexType>

26




_* XS:attribute

= Xs:attribute elements can be used within a
complex type to indicate attributes of
elements of that type.

= attributes of xs:attribute:
= name and type as for xs.element.
=« use = "required” or "optional”.

27




: XS:attribute

<xs:complexType name = "beerType”>
<xXs:attribute name = "name”
type = "xXxs:string”
use = "required” />
<xXs:attribute name = "price”
type = "xs:float”
use = "optional” />

</xXs:complexType>




* Restricted Simple Types

= Xxs:simpleType can describe enumerations and
range-restricted base types.

s hame is an attribute
s Xs:restriction is a subelement.

29




* Restrictions

= Attribute base gives the simple type to be
restricted, e.g., xs:integer.

s Xs:{min, max}{Inclusive, Exclusive} are four
attributes that can give a lower or upper
bound on a numerical range.

= Xs:enumeration is a subelement with attribute
value that allows enumerated types.

30




Example: license Attribute for BAR

<xXs:slimpleType name = "license”>
<Xs:restrictlon base = "xXs:string”>
<Xs:enumeration value = "Full” />
<xs:enumeration value = "Beer only” /
<Xs:enumeration value = "Sushi” />

</xs:restriction>

</xs:simpleType>




$_Ex_a..|:|1[1Le;Prices in Range [1,5)

<xs:simpleType name = "price”>

<Xs:restriction

base = "xs:float”
minInclusive = "1.00"
maxkExclusive = ”5.00" />

</xs:simpleType>

32




onstraint

enumeration

fractionDigits

length
maxExclusive
maxInclusive
maxLength
minExclusive
minInclusive
minLength

pattern
totalDigits
whiteSpace

June 1C, cue.

Availables Constraints

Defines a list of acceptable values

Specifies the maximum number of decimal places allowed. Must be equal to or
greater than zero

Specifies the exact number of characters or list items allowed. Must be equal to or
greater than zero

Splecigies the upper bounds for numeric values (the value must be less than this
value

Specifies the upper bounds for numeric values (the value must be less than or equal
to this value)

Specifies the maximum number of characters or list items allowed. Must be equal to
or greater than zero

Specifies the lower bounds for numeric values (the value must be greater than this
value)

Specifies the lower bounds for numeric values (the value must be greater than or
equal to this value)

Specifies the minimum number of characters or list items allowed. Must be equal to
or greater than zero

Defines the exact sequence of characters that are acceptable

Specifies the exact number of digits allowed. Must be greater than zero

Specifies how white space (line feeds, tabs, spaces, and carriage retums) is handled

THEALIL] B el ] LAREREA 1R R I

33




* Keys in XML Schema

= An xs:element can have an xs:key subelement.

. : within this element, all subelements reached
by a certain selector path will have unique values for
a certain combination of 7e/ds.

: : within one BAR element, the name attribute
of a BEER element is unique.




<xs:field

</xXs:key>

</xs:element>

<xs:key name = "barKey”>

* . Key

And @

<xs:element name = "BAR" .. > indicates

an attribute
rather than
a tag.

<Xs:selector Rpaih] = "BERR” />

Xl /: Tename” />
|
XPath is a query language

for XML. All we need to

know here is that a path

is a sequence of tags
separated by / :




$ Foreign Keys

= An xs:keyref subelement within an xs:element
says that within this element, certain values
(defined by selector and field(s), as for keys)
must appear as values of a certain key.

36




. Foreign Key

|

= Suppose that we have declared that
subelement NAME of BAR is a key for BARS.

= The name of the key is barKey.

= We wish to declare DRINKER elements that
have FREQ subelements. An attribute bar of
FREQ is a foreign key, referring to the NAME
of a BAR.




* Example: Foreign Key in XML Schema

<Xs:element name = "DRINKERS"”

<xs:keyref name = "barRef”
refers = "barKey”

<Xs:selector xpath =
"DRINKER/FREQ"” />

<xs:field xpath = "@bar” />
</xs:keyref>
</xs:element>

33




Querying and Transforming XML
Data

Translation of information from one XML schema to another
= Querying on XML data
s Above two are closely related, and handled by the same tools
s Standard XML querying/translation languages
= XPath

= Simple language consisting of path expressions
= XSLT

= Simple language designed for translation from XML to XML
and XML to HTML

= XQuery
= An XML query language with a rich set of features




Tree Model of XML Data

Query and transformation languages are based on a tree model of
XML data
An XML documentis modeled as a tree, with nodes corresponding
to elements and attributes
= Elementnodes have child nodes, which can be attributes or
subelements
= Textin an elementis modeled as a text node child of the
element
= Children of a node are ordered according to their order in the
XML document
= Elementand attribute nodes (except for the root node) have a
single parent, which is an element node
= The root node has a single child, which is the root element of
the document




* Paths in XML Documents

= XPath is a language for describing paths in XML
documents.

= The result of the described path is a sequence
of items.

41




XPath

XPath is used to address (select) parts of documents using
path expressions

A path expression is a sequence of steps separated by “/”
= Think of file names in a directory hierarchy

Result of path expression: set of values that along with their
containing elements/attributes match the specified path

E.g. /university-3/instructor/name evaluated on the
university-3 data we saw earlier returns

<name>Srinivasan</name>
<name>Brandt</name>

E.g. Juniversity-3/instructor/name/text( )
returns the same names, but without the enclosing tags




* Path Expressions

= Simple path expressions are sequences of
slashes (/) and tags, starting with /.

o : /BARS/BAR/PRICE

= Construct the result by starting with just the
doc node and processing each tag from the
left.




* Evaluating a Path Expression

= Assume the first tag is the root.

= Processing the doc node by this tag results
in a sequence consisting of only the root
element.

= Suppose we have a sequence of items, and
the next tag is X.

= For each item that is an element node,
replace the element by the subelements
with tag X.




$ . /BARS

BAEc o
<BAR name = "JoesBar >
<PRICE theBeer = "Bud”>2.50</PRICE>

BARS element

</BAR> .
<BEER name = "Bud” soldBy = “JoesBar
slesbar . > | =
</BARS-. = <
EaE \ One item, the

<PRICE theBeer = "Miller">3.00</PRICE>

45




. /BARS/BAR

<BARS>
<BAR name = “JoesBar’> =T
<PRICE theBeer ="Bud"™>2.50</PRICE>
<PRICE theBeer = "Miller">3.00</PRICE>

</BAR> .. -

<BEER name = "Bud” sold%y = "JoesBar

SuesBar ..."/> ...

</BARS> This BAR element followed by
all the other BAR elements




* . /BARS/BAR/PRICE

<BARS>

<BAR name = “JoesBar”>
<PRICE theBeer = Bud »2.50«</PRICE>
<PRICE theBeer = "Niiller”>3.00</PRICE>

</BAR> ...
<BEER name = "Bud” soldBy + “"JoesBar

SuesBar ..."/> ..
</BARS>

" These PRICE elements follow

by the PRICE elements
of all the other bars.

47




$ Attributes in Paths

= Instead of going to subelements with a given
tag, you can go to an attribute of the elements

you already have.

= An attribute is indicated by putting @ in front of
its name.

43




* /BARS/BAR/PRICE/@theBeer

<BARS>
<BAR name = "JoesBar”>
<PRICE |theBeer = “Bud”>2.50</PRICE>
<PRICE[theBe&( = "Miller>3.00</PRICE>

</BAR> ...
<BEER name = "Bud”\soldBy = "JoesBar

SuesBar ..."/> ... These attributes contribute

</BARS> "Bud” "Miller” to the result,
followed by other theBeer

values. .




* Remember: Item Sequences

= Until now, all item sequences have been
sequences of elements.

= When a path expression ends in an attribute,
the result is typically a sequence of values of
primitive type, such as strings in the previous
example.




$ Paths that Begin Anywhere

= If the path starts from the document node and
begins with //X then the first step can begin at
the root or any subelement of the root, as long
as the tag is X




* . //PRICE

<BARS>
<BAR name = "JoesBar"™>
<PRICE theBeer ="Bud">2.50</PRICE>
<PRICE theBeer = "Miller’>3.00</PRICE>
BAR> . N\ 1
<BEER name = “"Bud” sol
SuesBar ..."/> ..

</BARS>

" These PRICE elements and
any other PRICE elements
In the entire document




* Wild-Card *

= A star (*) in place of a tag represents any one
tag.

o . /*/*/PRICE represents all price
objects at the third level of nesting.




*xample: /BARS/*

This BAR element, all other B
elements, the BEER element,

<BARS> ~~ other BEER elements
Fjﬁﬁﬁ name = “JoesBar’> |

<PRICE theBeer = "Bud”>2.50«</PRICE>
<PRICE theBeer = "Miller>3.00<«/PRICE>
</BAR> . |
<BEER name = "Bug” soldBy = “JoesBar
SuesBar ... /> ..

</BARS>




* Selection Conditions

= A condition inside [...] may follow a tag.

= If so, then only paths that have that tag and
also satisfy the condition are included in the
result of a path expression.




: Selection Condition

|

= /BARS/BAR/PRICE]. <&
<BARS> The current

<BAR name = “JoesBar”> element.
<PRICE theBeer = Bud >2.50</PRICE>
<PRICE theBeer willer"::-B.OOc:/PRICE}
</BAR> ...

The condition that the PRICE be

< $2.75 makes this price but not
the Miller price part of the result.




$ : Attribute in Selection

= /BARS/BAR/PRICE[ @theBeer = "Miller”]
<BARS>
<BAR name = "JoesBar”>
<PRICE theBeer = "Bud”>2.50</PRICE>
ngmg theBeer = "Miller”>3.00</PRICE>|

</BAR> ... o

Now, this PRICE element
Is selected, along with
any other prices for Miller.




* Axes

= In general, path expressions allow us to start
at the root and execute steps to find a
sequence of nodes at each step.

= At each step, we may follow any one of several
axes.

= The default axis is child:: --- go to all the
children of the current set of nodes.




 AXes

|

= /BARS/BEER is really shorthand for
/BARS/child::BEER .

= @ is really shorthand for the attribute:: axis.

=« Thus, /BARS/BEER[@name = "Bud” ] is
shorthand for

/BARS/BEER[attribute::name = "Bud”]




* More Axes

= Some other useful axes are:
1. parent:: = parent(s) of the current node(s).

». descendant-or-self:: = the current node(s)
and all descendants.
Note: // is really shorthand for this axis.

3. ancestor::, ancestor-or-self, etc.
.. self (the dot).

60




* XQuery

= XQuery is a general purpose query language for XML
data

= Currently being standardized by the World Wide Web
Consortium (W3C)

= XQuery is derived from the Quilt query language, which
itself borrows from SQL, XQL and XML-QL

= XQuery uses a
for ... let ... where. ... order by ...result ...
syntax
for & SQL from
where & SQL where
order by < SQL order by

result < SQL select

let allows temporary variables, and has no
equivalent in SQL




* FLWR Expressions

1. One or more for and/or let clauses.
>. Then an optional clause.
3. A clause.

52




$ Semantics of FLWR Expressions

= Each for creates a loop.
=« let produces only a local definition.

= At each iteration of the nested loops, if any,
evaluate the clause.

= If the clause returns TRUE, invoke the

clause, and append its value to the
output.




* FOR Clauses

for <variable> in <expression>, . . .
= Variables begin with $.

= A for-variable takes on each item in the
sequence denoted by the expression, in turn.

= Whatever follows this Is executed once for
each value of the variable.




. “"Expand the en-
*  FOR Cosedsting by

replacing variables
and path exps. by
their values.”

EER/@name

for $beer in
document(”bars.xml”

return

<BEERNAME >({$beerf} </BEERNAME>

= $beer ranges over the name attributes of all
beers in our example document.

= Result is a sequence of BEERNAME elements:
<BEERNAME>Bud</BEERNAME>
<BEERNAME>Miller</BEERNAME> . . .

65




$ Use of Braces

= When a variable name like $x, or an

expression, could be text, we need to surround

it by braces to avoid having it interpreted
literally.

- : <A>$x</A> is an A-element with
value "$x”, just like <A>foo</A> is an A-
element with "foo” as value.

56



* Use of Braces --- (2)

s But return $xis unambiguous.

= You cannot return an untagged string without
quoting it, as return ”$x”.




* LET Clauses

let <variable> := <expression>, . ..

= Value of the variable becomes the seguence of
items defined by the expression.

= Note let does not cause iteration; does.

53




 LET

}

let $d := document(“bars.xml”)
let $beers := $d/BARS/BEER/@name
return
<BEERNAMES> {$beers} </BEERNAMES>

s Returns one element with all the names of the
beers, like:

<BEERNAMES>Bud Miller ...</BEERNAMES>

59




*erer-By Clauses

= FLWR is really FLWOR: an order-by clause can
precede the return.

=« Form: order by <expression>

= With optional or
s The expression is evaluated for each assignment
to variables.

= Determines placement in output sequence.




: Order-By

= List all prices for Bud, lowest first.

let $d := document(“bars.xml”)

for $p in 5c/BARS/BAR/PRICE| @theBeer="Bud”
orcder by $p

| m—

b
i
i
i

D

N
— " Order those bindings Generates bindings
by the valuesinside O $p to PRICE
the elements (auto- ~ €/€ments.
Each bmdmg is evaluated matic coersion).
for the output. The
result is a sequence of
PRICE elements.

71




$ Predicates

= Normally, conditions imply existential
quantification.

n : /BARS/BAR[@name] means "all the
bars that have a name.”
n : /BARS/BEER[ @soldAt = “JoesBar”]

gives the set of beers that are sold at Joe’s Bar.




* : Comparisons

= Let us produce the PRICE elements (from all
bars) for all the beers that are sold by Joe’s
Bar.

= The output will be BBP elements with the
names of the bar and beer as attributes and
the price element as a subelement.




* Strategy

1.

Create a triple for-loop, with variables
ranging over all BEER elements, all BAR
elements, and all PRICE elements within
those BAR elements.

Check that the beer is sold at Joe’s Bar and
that the name of the beer and theBeer in
the PRICE element match.

Construct the output element.




The Query

let Sbars = doc(”bars.xml”)/BARS
for Sbeer in Sbars/BEER True if “JoesBar”

for S$bar in $bars/BAR appears anywhere
in the sequence

for S$price in S$bar/PRICE //

where |Sheer/Hsoldhl = "JoesBar” and
Sprice/l@theBeer = S$Sbeer/(@name

return <BBP bar = {Sbar/@name} beer
= {Sbeer/@name}>{Sprice}</BBP>

73




* Strict Comparisons

= [0 require that the things being compared are

sequences of only one element, use the Fortran
comparison operators:

= €q, he, It, le, gt, ge.

o . $beer/@soldAt eq "JoesBar” is true
only if Joe’s is the only bar selling the beer.




* Comparison of Elements and Values

= When an element is compared to a primitive

value, the element is treated as its value, if that
value is atomic.

m . /BARS/BAR[(@name="JoesBar”]/
PRICE[@theBeer="Bud”] eq "2.50"

s true if Joe charges $2.50 for Bud.




* Comparison of Two Elements

It is insufficient that two elements look alike.

/BARS/BAR [[@name="JoesBar”] /

PRICE [(@theBeer="Bud”] eq
/BARS/BAR[(@name="SuesBar”] /

PRICE [ (dtheBReer="Bud”]

s false, even if Joe and Sue charge the same
for Bud.




* Comparison of Elements — (2)

= For elements to be equal, they must be the
same, physically, in the implied document.

= Subtlety: elements are really pointers to
sections of particular documents, not the text
strings appearing in the section.




* Getting Data From Elements

= Suppose we want to compare the values of
elements, rather than their location in
documents.

= [0 extract just the value (e.g., the price itself)
from an element £, use data(£).




* Example: data()

= Suppose we want to modify the return for “find
the prices of beers at bars that sell a beer Joe
sells” to produce an empty BBP element with
price as one of its attributes.

return <BBP bar = {S$bar/@name} beer
= {Sbeer/@name} price =
{data(Sprice)} />

81




* Eliminating Duplicates

= Use function distinct-values applied to a

sequence.

= Subtlety: this function strips tags away from
elements and compares the string values.

= But it doesn't restore the tags in the result.




. All the Distinct Prices

return distinct-values/(

Remember: XQuery is
an expression language.
A query can appear any
place a value can.




XSLT

A stylesheet stores formatting options for a document, usually
separately from document

= E.g. an HTML style sheet may specify font colors and sizes for
headings, etc.

The XML Stylesheet Language (XSL) was originally designed
for generating HTML from XML

XSLT is a general-purpose transformation language
= Can translate XML to XML, and XML to HTML
XSLT transformations are expressed using rules called templates

= Templates combine selection using XPath with construction of
results




Application Program Interface

= There are two standard application program interfacesto XML
data:

= SAX (Simple API for XML)

= Based on parser model, user provides event handlers for
parsing events

E.g. start of element, end of element
= DOM (Document Object Model)
= XML data is parsed into a tree representation
= Variety of functions provided for traversing the DOM tree

« E.g.: Java DOM API provides Node class with methods
getParentNode( ), getFirstChild( ), getNextSibling()

getAttribute( ), getData( ) (for text node)
getElementsByTagName( ), ...

= Also provides functions for updating DOM tree




SQL/XML

= New standard SQL extension that allows creation of nested XML
output
= Each output tuple is mapped to an XML element row
<university >
<department>
<row>
<dept name> Comp. Sci. </dept name>
<building> Taylor </building>
<budget> 100000 </budget>
</row>
... more rows If there are more output tuples ...

</department>
... other relations ..

</university>




SQL Extensions

xmlelement creates XML elements
= Xmlattributes creates attributes

select xmlelement (name "course”,

xmlattributes (course id as course id, dept nameas dept
name),

xmlelement (name "“title”, title),

xmlelement (name "credits”, credits))
from course

= Xmlagg creates a forest of XML elements

select xmlelement (name“department”,
dept name
xmlagg (xmliforest(course id)
order by course id))

from course
group by dept name




XML Applications

= Storing and exchanging data with complex structures

= E.g. Open Document Format (ODF) format standard for
storing Open Office and Office Open XML (OOXML)
format standard for storing Microsoft Office documents

= Numerous other standards for a variety of applications
=« ChemML, MathML
= Standard for data exchange for Web services
= remote method invocation over HTTP protocol
= More in next slide
= Data mediation

= Common data representation format to bridge different
systems




* Web Services

= The Simple Object Access Protocol (SOAP) standard:

« Invocation of procedures across applications with
distinct databases

= XML used to represent procedure input and output

= A Web serviceis a site providing a collection of SOAP
procedures

« Described using the Web Services Description
Language (WSDL)
« Directories of Web services are described using the

Universal Description, Discovery, and Integration
(UDDI) standard




Implementacion de XML en Oracle 1

= XMLType

= XMLType is a native server datatype that allows the database to
understand that a column or table contains XML. XMLType also
provides methods that allow common operations such as XML
schema validation and XSL transformations on XML content.You
can use the XMLType data-type like any other datatype. For
example, you can use XMLType when:

= Creating a column in a relational table
= Declaring PL/SQL variables
= Defining and calling PL/SQL procedures and functions

= Since XMLType is an object type, you can also create a fable of
XMLType. By default, an XMLType table or column can contain
any well-formed XML document.

June 10, 2014

o0




Implementacion de XML en Oracle 2

SELECT extractValue(object value,'/PurchaseOrder/Reference’)
"REFERENCE"

FROM PURCHASEORDER

WHERE
existsNode(object_value,’/PurchaseOrder[Speciallnstructions="

Expidite"]") = 1;

June 10, 2014 91




Implementacion de XML en Oracle 3

SELECT
p.object_value.extract('/PurchaseOrder/Requestor/text()").getStrin
gVal() NAME, count(¥)

FROM PURCHASEORDERp

WHERE p.object value.existsNode (
'/PurchaseQrder/ShippingIlnstructions[ora:contains(address/text(),"
Shores")>0], xmlns:ora="http://xmlns.oracle.com/xdb') = 1 AND
p.object_value.extract('/PurchaseOrder/Requestor/text()").getStrin
gVal() like "%ll1%'

GROUP BY
p.object value.extract('/PurchaseOrder/Requestor/text()’).getStrin

gval();

June 10, 2014 92




$ Implementacion de XML en Oracle 4

UPDATE PURCHASEORDER

SET object_value =
updateXML(object_value,'/PurchaseOrder/Actio
ns/Action[1]/User/text()’,'SKING')

WHERE

existsNode(object value,'/PurchaseOrder[Refer
ence="SBELL-2002100912333601PDT"]') =1

une 10, 2014




* Presentacion

= Esta presentacion fue armada utilizando, ademas de
material propio, material contenido en los manuales de
Oracle y material provisto por los siguientes autores

= Siblberschat, Korth, Sudarshan - Database Systems
Concepts, 6t Ed., Mc Graw Hill, 2010

= Garcia Molina/Ullman/Widom - Database Systems: The
Complete Book, 2nd Ed.,Prentice Hall, 2009

= Elmasri/Navathe - Fundamentals of Database Systems,
6th Ed., Addison Wesley, 2011

June 10, 2014 04




