UBA - Facultad de Ciencias Exactas y Naturales - Departamento de Computación- Algoritmos y Estructuras de Datos I Recuperatorio del primer parcial- Segundo cuatrimestre de 2022

Ap	3b	3a	2b	2a	1b	1a
LU	10	10	27	10	10	10

llido ACUAYOU Nombre CECIUA ANDREA
L333181 Cant. de hojas entregadas .3

C. Ulises LOPEZ

El parcial se aprueba con 65 puntos.

Aclaración: pueden usar las funciones y los predicados auxiliares vistos en la teórica (€, ++, etc.) sin necesidad de definirlos.

Ejercicio 1. [20 puntos] Dados los siguientes predicados y programas.

- pred pertenece $(e: \mathbb{Z}, l: seq\langle \mathbb{Z} \rangle) \{ (\exists i: \mathbb{Z}) (0 \leq i < |l| \land_L l[i] = e) \}$
- $\quad \text{pred enPosicionesPares} (e:\mathbb{Z},l:seq\langle\mathbb{Z}\rangle) \{|l|>0 \land (\forall i:\mathbb{Z}) (0\leq i<|l| \land (i\ mod\ 2=0) \longrightarrow_L l[i]=e\} \}$
- pred esElUnico $(e: \mathbb{Z}, l: seq(\mathbb{Z}))\{|l| = 1 \land_L l[0] = e\}$

```
int programa1(int e, vector<int> 1) {
  return 0;
```

- a) [10 puntos] ¿Cuál es la relación de fuerza entre los predicados? ¿Cuál es el más débil y cuál el más fuerte? Justificar.
- b) [10 puntos] ¿Cuál de los predicados dados es la precondición más débil que puede darse para que programa1 sea correcto si se devuelve un entero res y la postcondición es $\{0 \le res < |l| \land_L l[res] = e\}$? Justificar.

Ejercicio 2. [40 puntos] Una secuencia de enteros se denomina SubeBaja si es estrictamente creciente hasta su valor máximo y a partir de ese elemento comienza a decrecer. Para que una secuencia se considere SubeBaja debe tener por lo menos 3 elementos y no contener elementos repetidos. Además, el máximo no debe estar ni en la primera ni en la última posición. Por ejemplo, <1,4,15,8>y<-2,10,4,1,-3> son secuencias SubeBaja.

- a) [10 puntos] Especificar el predicado esSubeBaja $(s: eeq(\mathbb{Z}))$ que indica si la secuencia s cumple las propiedades necesarias para ser SubeBaja.
- b) [30 puntos] Especificar el problema armar Secuencias Sube
Baja(in s: $seq\langle\mathbb{Z}\rangle$, out res: $seq\langle seq\langle\mathbb{Z}\rangle\rangle$) que dada una secuencia de enteros s devuelve una secuencia de secuencias de enteros con todas las posibles secuencias Sube Baja contenidas en s. Por ejemplo, dada s=<4,4,5,3,1> podría devolver la siguiente secuencia:

```
\ll 1, 4, 3 >, < 3, 4, 1 >, < 1, 5, 3 >, < 3, 5, 1 >, < 1, 5, 4 >, < 4, 5, 1 >, < 3, 5, 4 >, < 4, 5, 3 >,
<1,3,5,4>, <1,4,5,3>, <1,5,4,3>, <3,5,4,1>, <3,4,5,1>, <4,5,3,1\gg.
```

Notar que los elementos de la secuencia original pueden estar en más de una secuencia SubeBaja y que res no debe tener secuencias repetidas.

Ejercicio 3. [40 puntos] Dada una secuencia de enteros s, denominamos corte de s a cualquier par de secuencias de enteros tal que al que concatenar la primera con la segunda se obtiene s. Por ejemplo, los posibles cortes de la secuencia <1,3,2>son (<>, <1,3,2>), (<1>, <3,2>), (<1,3>, <2>) y (<1,3,2>, <>).

- a) [10 puntos] Especificar un predicado que dada una secuencia de enteros s y un par de secuencias de enteros c, indique si c es un corte de s. Por ejemplo, dados s=<1,3,2> y c=(<1>,<3,2>), el predicado es verdadero. Pero dados s = <5, 5, 1 > y c = (<5, 1>, <5>), el predicado es falso.
- b) [30 puntos] Especificar un problema que dada una secuencia de enteros, indique el corte más parejo posible respecto de la suma de sus elementos. Por ejemplo, dada la secuencia <1,2,3,4,2>, el corte más parejo es (<1,2,3>, <4,2>), porque la diferencia entre la suma de los elementos de cada secuencia es cero. Notar que puede haber más de un resultado posible y que la diferencia del corte más parejo no siempre es cero: por ejemplo, para la secuencia <1,2,1> los cortes óptimos son (<1>,<2,1>) y (<1,2>,<1>).