1 Mapeo Objeto Relacional

June 10, 2014 Base de Datos 1

Merging Relational and Object
Models

= Object-oriented models support interesting
data types --- not just flat files.

= Maps, multimedia, etc.

= The relational model supports very-high-level
qgueries.

= Object-relational databases are an attempt to
get the best of both.

Complex Data Types

= Motivation:
= Permit non-atomic domains (atomic = indivisible)

= Example of non-atomic domain: set of integers,or set of

tuples
= Allows more intuitive modeling for applications with
complex data
= Intuitive definition:
= allow relations whenever we allow atomic (scalar) values
— relations within relations

=« Retains mathematical foundation of relational model
= Violates first normal form.

* Example of a Nested Relation

xample: library information system
= Each book has
= fitle,
= a list (array) of authors,
= Publisher, with subfields nameand branch, and
= a set of keywords

= Non-1NF relation books

title guthor _arruy publisher keyivord_set

| (name, branch)
Compilers | [Smith, Jones] | (McGraw-Hill, NewYork) | [parsing, analysis}

Networks | [Jones, Frick] {Onsford, London) Internet, Web)

Complex Types and SQL

Extensions introduced in SQL:1999 to support complex types:
= Collection and large object types
= Nested relations are an example of collection types
= Structured types
= Nested record structures like composite attributes
= Inheritance
= Object orientation
= Including object identifiers and references
Not fully implemented in any database system currently

= But some features are presentin each of the major commercial
database systems

= Read the manual of your database system to see what it
supports

$ User Defined Types

s A user-defined type, or UDT, is essentially a
class definition, with a structure and methods.

= [WO uses:
As a rowtype, that is, the type of a relation.
2. As the type of an attribute of a relation.

Structured Types and Inheritance in
SQL

Structured types (a.k.a. user-defined types) can be declared and used in

SQL
create type Nameas
(firstname varchar({20),
lastname varchar(20))
final
create type Addressas
(street varchar(20),
city varchar(20),
Zipcode varchar(20))
not final

= Note: final and not final indicate whether subtypes can be created

Structured types can be used to create tables with compaosite attributes
create table person(
name Name,
address Address,
dateOfBirth dateg
Dot notation used to reference components: name.firstname

Structured Types (cont.)

= User-defined row types

create type PersonTypeas (
name Name,
address Address,
dateOfBirth date)

not final

= Can then create a table whose rows are a user-defined type
create table customerof CustomerType

= Alternative using unnamed row types.

create table person_
name row(firstname varchar(20),
lastname varchar(20)),
addressrow(street varchar(20),
city varcha r%ZD),,
zipcode varchar(20)),
gateOfBirth date)

Constructor Functions

Constructor functions are used to create values of structured types
E.g.
create function Namée(firstnamevarchar(20), /astnamevarchar(20))
returns NVame
begin

set self. firstname = firstname;

set self./astname = lastname;
end

To create a value of type NMame, we use
new Name('John', 'Smith")

Normally used in insert statements
insert into Personvalues
(new Name('John', 'Smith),
new Address('20 Main St’, 'New York', '11001"),
date '1960-8-22");

Type Inheritance

Suppose that we have the following type definition for people:

create type Person

(namevarchar(20),
addressvarchar(20))

Using inheritance to define the student and teacher types
create type Student
under Parson
(degree varchar(20),
department varchar(20))
create type Teacher
under Parson
(salary integer,
department varchar(20))
Subtypes can redefine methods by using overriding method in place
of method in the method declaration

Multiple Type Inheritance

SQL:1999 and SQL:2003 do not support multiple inheritance

If our type system supports multiple inheritance, we can define a
type for teaching assistant as follows:
create type Teaching Assistant
under Student, Teacher
To avoid a conflict between the two occurrences of departmentwe
can rename them

create type Teaching Assistant

under
Student with (departmentas student dept),

Teacher with (departmentas teacher dept)
Each value must have a most-specific type

$ Array and Multiset Types in SQL

= Example of array and multiset declaration:

create type Publisher as
(name varchar(20),
branch varchar(20));
create type Book as
(title varchar(20),
author_array varchar(20) array [10],
pub_date date,
publisher Publisher,
keyword-set varchar(20) multiset);

create table books of Book;

Creation of Collection Values

Array construction
array [Silberschatz’, Korth', Sudarshan’]

Multisets
multiset ['computer’, 'database’, 'SQL']

To create a tuple of the type defined by the books relation:
(‘Compilers’, array| Smith’, Jones’],
new Publisher(McGraw-Hill', New York'),
multiset [parsing’, analysis’ |)
To insertthe preceding tuple into the relation books

insert into books
values
(‘Compilers’, array| Smith’, “J:::nesH,
new Publisher(McGraw-Hill', New York'),
multiset [parsing’, analysis’]);

Unnesting

The transformation of a nested relation into a form with fewer {or no)

relation-valued attributes us called unnesting.

E.Q.

select fitle, A as author, publisher.name as pub_name,
publisher.branch as pub_branch, K. keyword

from books as B, unnest(5.author_array) as A (author),

unnest (5.keyword _set) as K (keyword)
Result relation fat_books

title atetior pub_nanie pub_branch Keyrrord
Compilers Smikh MceGraw-HIll | New York parsing
Compilers Janes MdCraw-Hill | New York pamsing
Compilers Smith | MdGraw-Hill | New York malysis
Compilers Jones McGraw-Hill | New York anealysis
Melworks Jones Oxdord London Internet
Networks Frick Oxford London Inbermwet

Setworks Jones Oxford London Web

| Networks Frick Oxford London Web

Querying Collection-Valued Attributes

o find all books that have the word "database” as a keyword,
select tit/e

from books
where ‘database’in (unnest(keyword-set))

We can access individual elements of an array by using indices

« E.g.: If we know that a particular book has three authors, we
could write:

select author arra[1], author_arra){2], author arra)y3]

from books
where title = Database System Concepts’

To get a relation containing pairs of the form "title, author_name” for
each book and each author of the book
select B.title, A.author
from booksas B, unnest (B.author_array) as A (author)
To retain ordering information we add a with ordinality clause
select B.title, A.author, A.position

from booksas B unnest S&aufhw'_arrayﬂ with ordinality as
A (author, position

Nesting

Nesting is the opposite of unnesting, creating a collection-valued
attribute

Nesting can be done in @ manner similar to aggregation, but using
the function colect() in place of an aggregation operation, to
create a multiset

To nestthe flat_booksrelation on the attribute keyword:

select title, author, Publisher(pub_name, pub _branch) as
publisher,
collect (keyword) as keyword set
from flat books
groupby title, author, publisher
To nest on both authors and keywords:
select title, collect (author) as author set,

Puﬁ:ﬁsher{pub name, pub_branch) as publisher,
collect (keywurd) as keyword set

from Fat books
group by title, publisher

Nesting (Cont.)

= Anotherapproach to creating nested relations is to use

subqueriesin the select clause, starting from the 4NF relation
books4

select tHit/e,
array (select author
from authorsas A
where A.fitle= B.title

order by A.position) as author _array,
Publisher(pub-name, pub-branch) as publisher,
multiset (select keyword

from keywordsas K

where K title = B.title) as keyword set
from books4as B

$ Storing Nested Relations

= Oracle doesn't really store each nested table
as a separate relation --- it just makes it look
that way.

= Rather, there is one relation R in which all

the tuples of all the nested tables for one
attribute A are stored.

= Declare in CREATE TABLE by:
NESTED TABLE 4 STORE AS R

: Storing Nested Tables

CREATE TABLE Manfs (
name CHAR(30),
addr CHAR(50),
beers beerTableType

)
NESTED TABLE beers STORE AS BeerTable:

* References

= If 7 is a type, then REF 7 is the type of a
reference to 7/, that is, a pointer to an object of

type /.

= Often called an "object ID” in OO systems.

= Unlike object ID’s, a REF is visible, although it
is gibberish.

Object-Identity and Reference Types

Define a type Department with a field name and a field fread which is a
reference to the type Person, with table peaple as scope:

create type Department (
name varchar (20),
head ref (Parson) scope people)

We can then create a table departments as follows
create table departments of Department

We can omit the declaration scope people from the type declaration
and instead make an addition to the create table statement:
create table departments of Departiment
(head with options scope people)
Referenced table must have an attribute that stores the identifier, called
the self-referential attribute

create table pegple of Person
ref is peison_id system generated;

$ Initializing Reference-Typed Values

= [0 create a tuple with a reference value, we

can first create the tuple with a null reference

and then set the reference separately:
insert into departments
values (CS’, null)
update departments
set fhead = (select p.person_id
from people as p
where name = John’)
where name = CS’

Object Identifiers Using Reference
Types

= Reference type

= Create unique system-generated object
identifiers

s Examples:
. REF IS SYSTEM GENERATED

+ REF 15 <OID ATTRIBUTE>
<VALUE_GENERATION_METHOD> ;

User Generated Identifiers

e type of the object-identifier must be specified as part of the type
definition of the referenced table, and

The table definition must specify that the reference is user generated

create type Person
(namevarchar(20)
addressvarchar(20) g

ref using varchar(20
create table peop/e of Person
ref is person_iduser generated
When creating a tuple, we must provide a unigue value for the
identifier:
insert into peop/e (person_id, name, address) values
('01284567', 'John’, 23 Coyote Run’)

We can then use the identifier value when inserting a tuple into
departments

= Avoids need for a separate query to retrieve the identifier:

insert into departments
values(CS, 02184567

$ User Generated Identifiers (Cont.)

Can use an existing primary key value as the
identifier:
create type Person
(name varchar (20) primary key,
address varchar(20))
ref from (name)
create table people of Person
ref is person_idderived

= When inserting a tuple for departments, we
can then use

insert into departments
values(CS’, John")

Path Expressions

= Find the names and addresses of the heads of all
departments:
select /ead —> name, head —> address
from departments
= An expression such as “head->name” is called a path
expression
= Path expressions help avoid explicit joins

= If department head were not a reference, a join of
aepartments with peopfle would be required to get at
the address

= Makes expressing the query much easier for the user

$ Implementing O-R Features

= Similar to how E-R features are mapped onto
relation schemas

= Subtable implementation

= Each table stores primary key and those
attributes defined in that table

or,

» Each table stores both locally defined and
inherited attributes

* Presentacion

» Esta presentacion fue armada utilizando, ademas de
material propio, material provisto por los siguientes

autores:

= Siblberschat, Korth, Sudarshan - Database Systems
Concepts, 6 Ed., Mc Graw Hill, 2010

= Garcia Molina/Ullman/Widom - Database Systems: The
Complete Book, 2nd Ed.,Prentice Hall, 2009

= Elmasri/Navathe - Fundamentals of Database Systems,
6th Ed., Addison Wesley, 2011

June 10, 2014

