
Understanding Pipelining and Superscalar
Execution

Part II of Understanding the Microprocessor

 by Jon "Hannibal" Stokes

Download the PDF

(This feature for subscribers only!)

Introduction
In my previous article, Understanding the Microprocessor, I gave a high-level overview of what a
microprocessor is and how it functions. I talked about the kinds of tasks it performs and the
different steps that it goes through to carry out those tasks. The vision of the microprocessor which
emerged from that article was fairly simple and straightforward. It was also fairly limited and
primitive. Modern microprocessors are more complex--they do more things in more complicated
ways than the first article really implies. The present article will discuss two major innovations in
processor design that have brought about huge leaps in processor performance: pipelining and
superscalar execution. If you're going to understand modern processors, you have to master these
two concepts. Most of the newer tricks and techniques that I've covered in previous Ars articles on
new CPUs are aimed at improving the performance of one or both of these two fundamental design
approaches.

Pipelining Explained
You'll often hear the term "pipelining" in discussions of CPU technology, but the term itself is rarely
defined. Pipelining is a fairly simple concept, though, and the following section will make use of an
analogy in order to explain how it works.

(Note: The following discussion of pipelining is adapted from one of my articles on the K7, aka
Athlon. I've reworked the analogy a bit, but the diagrams are the same.)

Let's say that we at Ars decided to quit doing tech journalism and go into the increasingly lucrative
SUV manufacturing business. After some intense research, we determine that there are five stages
in the SUV building process, as follows:

Stage 1: build the chassis.

Stage 2: drop the engine in the chassis.

Stage 3: put doors, a hood, and coverings on the chassis.

Stage 4: attach the wheels.

Stage 5: paint the SUV.

When we first hit on the idea of using an assembly line, we decided that it would be best to hire and
train five crews of specialists, one for each stage of the SUV building process. There's one group to
build the chassis, one to build the engine and drop it in, another for the wheels, etc. Each stage of
the SUV building process takes a crew exactly one hour to complete.

mailto:hannibal@arstechnica.com
http://www.arstechnica.com/cpu/3q99/k7_theory/k7-one-1.html
http://archive.arstechnica.com/paedia/c/cpu/part-1/cpu1-1.html
http://arstechnica.com/etc/subscribe/subscribe-1.html
http://archive.arstechnica.com/etc/pdf/pdf-warning.html
http://www.adobe.com/

Now, since we Ars guys are computer types and not industrial engineers, we're not too bright when
it comes to making efficient use of factory resources. Also, because Ars was started back in the dot-
com boom days, we're still kind of stuck in that mindset so we run a pretty chill shop with lots of
free snacks, foosball tables, arcade games and other such employee perks. So our big plan is to have
the factory run as follows: we line up all five crews in a row, and we have the first crew start an
SUV at Stage 1. After Stage 1 is complete, the SUV moves down the line to the next stage and the
next crew drops the engine in. While the Stage 2 Crew is installing the engine in the chassis that the
Stage 1 Crew just built, the Stage 1 Crew (along with all of the rest of the crews) is free to go play
foosball, watch the big-screen plasma TV in the break room, surf the 'net, etc. Once the Stage 2
Crew is done, the SUV moves down to Stage 3 and the Stage 3 Crew takes over while the Stage 2
Crew hits the break room to party with everyone else.

The SUV moves on down the line through all five stages this way, with only one crew working on
one stage at any given time while the rest of the crews are idle. Once the completed SUV finishes
Stage 5, the crew at Stage 1 then starts on another SUV. At this rate, it takes exactly five hours to
finish a single SUV, and our factory puts out one SUV every five hours.

The following picture shows our assembly line with a SUV in Stage 2. It's having it's engine
installed while the other crews are idle.

Now, you may be thinking, Why not just have one full-time crew to do all the work? The nominal,
stated reason (i.e. the reason Caesar gave when he was pitching this assembly line idea to the rest of
the Ars team) is that each stage of construction requires a specific skill set. If we hire five, highly
skilled crews to do the job then it'll wind up taking us less time overall to build a SUV than if we
hired only one crew that's not very good (or very fast) at completing any of the five stages.

Of course, the real reason for having five crews (at least as far as I'm concerned) is that Caesar, in
classic Roman nepotistic fashion, believes in hiring his relatives and in paying them outrageously to
spend most of their time playing foosball. And Caesar has a pretty large family. But for the purposes
of the present discussion we'll pretend I didn't say this.

(Fast-forward one year.) Our SUV, the Ars Extinction LE (if you put "LE" on the end of the name
you can charge more), is selling like... well, it's selling like an SUV, which means it's doing pretty
well. In fact, it was awarded Car and Driver's prestigious "Ridiculously Aggressive-looking Design
of the Year" award, as well as the Global Climate Coalition's "Excellence in Environmental
Innovation" award for its stunningly low 0.5 mpg rating. (In case it's not obvious, GCC is an
"environmental" front group for the oil industry.) So demand for our SUV has speeded up, but
unfortunately Caesar's relatives have not.

Caesar's first plan for increasing plant output was to hire members of his wife's family to form a
second assembly line, also capable of producing one car every five hours, for a grand total of two
cars every five hours from our factory floor. At this point, though, the rest of the Ars crew had

become wise to his game, and we put our collective foot down: Big C.'s people will just have to find
a way to play less foosball and build more cars.

Lucky for us, Caesar's Republican instincts have led him to firmly suppress any attempts at labor
organizing (even though the "labor" is essentially his family--yes, he is that vicious), which means
that our demands for increased productivity won't trigger a strike. So Caesar and the rest of the
board hire a high-priced and high-powered team of consultants to figure out a way to increase
productivity. One year and thousands of billable hours later, they hit upon a solution: with proper
scheduling of the crews, we can build one SUV each hour, and thus drastically improve the
efficiency of our assembly line. The revised workflow looks as follows: Crew 1 builds a chassis and
finishes it, and then sends it on to Crew 2. While Crew 2 is dropping the engine in, Crew 1 starts on
another chassis... and so on. (Of course, this is how most of us nowadays in the post-Ford era expect
a good, efficient assembly line to work.)

If we can keep the assembly line full, and keep all five crews working at once, then we can spit out
a SUV every hour: a five-fold improvement in production. Here's a picture of our fully pipelined
assembly line. Notice that all the clocks read the same time. That's because all the stages are full at
once, and all the crews are busy at once. That, in a nutshell, is pipelining.

So, back to the world of computers. You might recall from the previous article that a computer
basically just repeats four basic steps over and over again in order to execute a program:

1. Fetch the next instruction from the address stored in the program counter.
2. Store that instruction in the instruction register and decode it, and increment the address in

the program counter.
3. Execute the instruction in the instruction register.
4. Repeat steps 1-3.

You should also recall step 3, the execute stage, itself consists of three steps. In the case of the ADD
A, B example that we used last time, the steps are:

1. Read the contents of registers A and B.
2. Add the contents of A and B.
3. Write the result back to register A.

At this point, I'd like to modify the first list above by removing step 4 as an explicit step and
replacing it with step 3 from the second list. Here's what I'm talking about:

1. Fetch the next instruction from the address stored in the program counter.
2. Store that instruction in the instruction register and decode it, and increment the address in

the program counter.
3. Execute the instruction currently in the instruction register.
4. Write the results of that instruction from the ALU back into the destination register.

http://archive.arstechnica.com/paedia/c/cpu/part-1/cpu1-1.html

In a modern processor, the four steps above get repeated over and over again until the program is
done executing. These are, in fact, the four stages in a classic RISC pipeline. Here are the four
stages in their abbreviated form, the form in which you'll most often see them:

1. Fetch
2. Decode
3. Execute
4. Write

To return to our assembly line analogy, each of the above stages could be said to represent one stage
in the life-cycle of an instruction. An instruction starts out in the fetch stage, moves to the decode
stage, then to the execute stage, and finally to the write stage. Early processors were like our first,
inefficient assembly line: there was only one instruction in the pipeline at a time, and as the
instruction moved to each successive stage all of the other stages would lie idle. The result of this
was that if each stage took 10 ms to complete, then the processor could finish only one instruction
every 40 ms.

Once pipelined execution is introduced, the four stages act like four stages in a regular automotive
assembly line. When the pipeline is at full capacity, each stage is busy working on an instruction
and the whole pipeline is able to spit out one instruction right after the other. If each stage takes 10
ms to complete, then a full pipeline can process one instruction every 10ms.

Basic instruction flow

One useful division that computer architects use when talking about CPUs is that of "front end" vs.
"back end" or "execution engine." As already know, when instructions are fetched from the cache or
main memory, they must be fetched and decoded for execution. This fetching and decoding takes
place in the processor's front end. The front end roughly corresponds to the control and I/O units in
the previous article's diagram of the programming model.

The following diagram, along with some of the current discussion, was adapted from my first P4 vs.
G4e article. It shows three different execution units: the load-store unit (LSU), the integer or
arithmetic-logic unit (ALU), and the floating-point unit (FPU). Since we haven't yet talked about
putting more than one execution unit in the processor, just ignore the LSU and FPU for now. They'll
show up again in the next section.

Basic CPU Instruction Flow

Instructions make their way from the cache to the front end and down through the execution engine
(or back end), which is where the actual work of number crunching gets done. The back end
corresponds roughly to the ALU and registers in the programming model.

Here's a diagram of instruction flow that shows all four pipeline stages. Note that in this particular
diagram the write stage happens to be labeled "retire."

Basic 4-stage pipeline

This basic pipeline represents the path that instructions take through the processor.

Pipelining and clock speed

All of a CPU's parts march in lock-step to the beat of a single clock. Everything is timed by that
clock pulse, so that the faster the clock the faster the CPU runs. (For more on CPU clocking, see
this article.) The amount of time that it takes to complete one pipeline stage is exactly one CPU
clock cycle. Thus a faster clock means that each of the individual pipeline stages take less time. In
terms of our assembly line analogy, we could imagine that Caesar has a strictly enforced rule that
each crew must take at most one hour and not a minute more to complete their work and send the
SUV along to the next stage. If Caesar were really evil and he wanted to squeeze more production
out of the entire assembly line, he could tinker with the large clock on the factory floor and speed it
up by a few minutes an hour. Assuming the crew members don't have watches and are all timing
their work by that one, sped up clock, then if Caesar shortens each "hour" by 10 mins the assembly
line will move faster and will produce one SUV every 50 minutes.

If you think about it, saying that each pipeline stage can take at most one clock cycle to complete is
equivalent to saying that to entire pipeline can only be as fast as its slowest stage. In other words,
the amount of time it takes for the slowest stage in the pipeline to complete will be the length of the
CPU's clock cycle and thus of each pipeline stage. Again, to return to the SUV analogy, let's say that
Caesar had such great results with shortening the factory's "hours" by 10 minutes that he wants to
shave another 10 minutes off, reducing each "hour" to 40 minutes total. There's one problem,
though. Stage 2, in which the engine is installed, is by far the most difficult and time-consuming of
the five stages. The fastest that the Stage 2 Crew can complete an engine installation is 45 minutes.
Well, since all of the other crews are running off of the same clock as the Stage 2 Crew, this means
that the most Caesar can shorten the factory "hour" by is 15 minutes, to 45 minutes.

Because of this feature of pipelining, one of the most difficult and important challenges which the
CPU designer faces is that of balancing the pipeline so that no one stage has to do more work to do
than any other. The designer must distribute the work of processing an instruction evenly to each
stage, so that no one stage takes up too much time and thus slows down the entire pipeline.

Some concluding remarks on pipelining

Pipelining, in essence, allows the CPU to process multiple instructions at the same time. A four-
stage pipeline like the one described above gives the processor a "window" of four instructions.
This window slides along the code stream, moving forward by one instruction each clock cycle, and
allows the processor to "look at" and work on all four of the instructions in its window. So unlike
the simple processors in the previous article, pipelined processors "hold" and operate on more than
one instruction. For a variety of reasons, there are some portions of the code stream for which this
kind of four-instruction window just doesn't work. These rough spots in the codes stream
complicate things for the CPU architect. In the next article, I'll cover these complications and how
the architect can overcome them.

As you probably already know, all pipelines are not four stages. Rather, the four stages represent the
minimum breakdown of labor found in a modern, pipelined processor. For many processors, these
four stages are further subdivided into even smaller stages. Because of the aforementioned
relationship of clockspeed to the number of pipeline stages, more and shorter pipeline stages = a
faster clock speed. (Note that the number of pipeline stages is referred to as the pipeline depth. So
our four-stage pipeline has a pipeline depth of four.)

To see what I'm talking about, check out the following breakdown of pipeline stages from this page
of my P4 vs. G4e article.

 G4 G4e

Front End 1 Fetch 1 Fetch1

2 Fetch2

http://arstechnica.com/cpu/01q2/p4andg4e/p4andg4e-3.html
http://www.arstechnica.com/cpu/1q99/clocklock-1.html

2 Decode/Dispatch
3 Decode/Dispatch

4 Issue

Back End

3 Execute 5 Execute

4 Complete/Write
6 Complete

7 Write

As you can see from the above table, the more advanced G4e breaks the G4's four-stage down into
two separate, shorter stages. Likewise the decode and write stages are also broken down into
smaller stages. (We'll talk about what the terms "issue," "complete," and "dispatch" mean in the next
article.)

The execute stage appears to be the only stage that isn't subdivided, but looks can be deceiving. In
fact, the execute stage is one of the most subdivided stages in many processors' pipelines. It's
usually listed in most basic pipeline diagrams as a single stage for convenience's sake, because it's
generally understood that it consists of multiple, single-cycle stages.

That the execute stage (or maybe we should use the broader term, execute phase) actually consists
of multiple pipeline stages shouldn't be a shock to you, though. In both this article and the previous
one we've seen that there's actually quite a bit going on in this phase. And the more complicated the
instruction that's being executed, the more steps there are in its execution. Integer instructions, like
our ADD A, B, are usually very simple and can be completed in a minimum number of steps. More
complicated instructions, like a floating-point division, involve multiple stages of addition and bit-
shifting to get a result. (Remember, the only math that computers really do is addition and bit
shifting.) So the number of execution stages in the pipeline of a floating-point unit will be greater
than the number of execution stages in the pipeline of a regular ALU.

Superscalar execution
The previous article covered the processor as it is visible to the programmer. The register files, the
processor status word, the ALU, and other parts of the programming model are all there to provide a
means for the programmer to manipulate the processor and make it do useful work. In other words,
the programming model is essentially a user interface for the CPU.

Much like the graphical user interfaces on modern computer systems, there's a lot more going on
"under the hood" than the simplicity of the interface would imply. In my article on multithreading,
superthreading and hyper-threading, I talked about the various ways in which the OS and processor
collaborate to fool the user into thinking that he or she is executing multiple programs at once.
There's a similar sort of trickery that goes on beneath the programming model in a modern
microprocessor, but it's intended to fool the programmer into thinking that there's only one thing
going on at a time, when really there are multiple things happening simultaneously. Let me explain.

Back in the days when you could fit only a few transistors on a single die, many of the parts of the
programming model actually fit on separate chips attached to a single circuit board. For instance,
one chip would contain the ALU, another the control unit, another the registers, etc. Such computers
were obviously quite slow, and the fact that they were made of multiple chips made them expensive.
Each chip had its own manufacturing and packaging costs, so the fewer chips you put on a board
the cheaper the overall system was. Each chip had its own manufacturing and packaging costs, and
then there was the cost and complexity of putting them all together on a single circuit board. (Note
that this is still true, today. The cost of producing systems and components can be drastically
reduced by packing the functionality of multiple chips into a single chip.)

With the advent of the Intel 4004 in 1971, all of that changed. The 4004 was the world's first
microprocessor on a chip. Designed to be the brains of a calculator manufactured by a now defunct
company named Busicom, the 4004 had sixteen 4-bit registers, an ALU, decoding and control logic

http://arstechnica.com/paedia/h/hyperthreading/hyperthreading-1.html
http://arstechnica.com/paedia/h/hyperthreading/hyperthreading-1.html
http://archive.arstechnica.com/paedia/c/cpu/part-1/cpu1-1.html

all packed onto a single, 2,300 transistor chip. The 4004 was quite a feat for its day, and it paved the
way for the PC revolution. However, it wasn't until Intel released the 8080 four years later that the
world saw the first true general purpose CPU. (For a good history of the development of the
microprocessor, see this article.)

During the decades following the 4004, transistor densities increased at a stunning pace. As CPU
designers had more and more transistors to work with when designing new chips, they began to
think up novel ways for using those transistors to increase computing performance on application
code. One of the first things that occurred to designers was that they could put more than one ALU a
chip, and have both ALUs working in parallel to process code faster. Since these designs could do
more than one scalar (or integer, for our purposes) operation at once, they were called superscalar
computers. The RS6000 from IBM was released in 1990 and was the world's first superscalar CPU.
Intel followed in 1993 with the Pentium, which with its two ALUs brought the x86 world into the
superscalar era.

Superscalar processing adds a bit of complexity to the processor's control unit because it's now
tasked not only with fetching and decoding instructions, but with reordering the linear instruction
stream so that some of its individual instructions could execute in parallel. Furthermore, once
executed the instructions must be put back in the order in which they were originally fetched, so
that both the programmer and the rest of the system have no idea that the instructions weren't
executed in their proper sequence.

This last point is important, since even though there are multiple ALUs in the hardware the
programming model does not change. The programmer still writes to the same interface, even
though that interface now represents a fundamentally different type of machine than the processor
actually is (i.e. the interface represents a sequential execution machine and the processor is actually
a parallel execution machine). So even though the superscalar CPU executes instructions in parallel,
the illusion of sequential execution absolutely must be maintained for the sake of the programmer.

The important thing to remember is that main memory still sees one code stream, one data stream
and one results stream. However, the code and data streams are carved up inside the computer and
pushed through the two ALUs in parallel.

One challenge to superscalar design: structural hazards

Designing a superscalar CPU presents the processor architect with a whole new set of challenges.
I'm only going to talk about one of these challenges in the current article, because I'll address the
others in the next article. In order to motivate our discussion of the this challenge, let's look at a
short code example that shows superscalar execution in action. Assuming the programming model
that I presented last time, consider the following snippet of code:

.

.

.
15 ADD A, B
16 ADD C, D
.
.
.

On a non-superscalar CPU like the one from the first article, the ALU would first add the contents
of registers A and B, placing the results in A. When that addition was complete, it would then add
the contents of C and D, placing the results in D. However, suppose we add a second ALU to our
simple processor. Both of the instructions would then be executed simultaneously, with each ALU
executing one of the two instructions.

http://news.com.com/2009-1001-275806.html

Now, this example presumes that both ALUs share the same group of eight registers. In order for
our register file to accommodate multiple ALU's accessing it at once, however, it needs to be
modified. Otherwise, executing the above two instructions in parallel would trigger what's called a
structural hazard, where the processor doesn't have enough resources to execute both instructions
at once.

Excursus: the register file

In a superscalar design, it would require an enormous number of wires to connect each register
directly to each ALU. This problem gets worse as the number of registers and ALUs increases.
Hence, in superscalar design with a large number of registers, a CPU's registers are grouped
together into a special unit called a register file. This unit is a memory array, much like the kinds of
memory arrays I've detailed in the Ars RAM Guide, and it's accessed through an interface that
allows the ALU to read from or write to specific registers. This interface consists of a data bus and
two types of ports: the read ports and the write ports. In order to read a value from a single register
in the register file, the ALU accesses the register file's read port and requests that the data from a
specific register be placed on the special internal data bus that the register file shares with the ALU.
Likewise, writing to the register file is done through the file's write port.

A single read port allows the ALU to access a single register at a time, so in order for an ALU to
read from two registers simultaneously (like in the case of our two-operand ADD instruction) the
register file must have two read ports. Likewise, a write port allows the ALU to write to only one
register at a time, so an ALU needs a single write port in order to be able to write the results of an
operation back to a register. Therefore the register file needs two read ports and one write port for
each ALU. So for our two-ALU superscalar design, the register file needs a total of four read ports
and two write ports.

It so happens that the amount of die space that the register file takes up increases approximately
with the square of the number of ports, so there is a practical limit on the number of ports that a
given register file can support. This is one of the reasons why modern CPUs use separate register
files to store integer, floating-point, and vector numbers. Since each type of math (integer floating-
point, vector) uses a different type of execution unit, attaching multiple integer, floating-point, and
vector execution units to a single register file would result in quite a large file. (An execution unit is
a generic term for a unit that executes instructions. The ALU is a type of execution unit that
executes integer and logical instructions only. The FPU (floating-point unit) executes only floating-
point instructions, and the VPU (vector processing unit) executes only vector instructions. We'll
cover the different types of execution units in more detail, below.)

There's also another reason for using multiple register files to accommodate different types of
execution units. As the size of the register file increases, so does the amount of time it takes to
access it. You might recall from the first article's discussion of registers that we assume that register
reads and writes happen instantaneously. If a register file gets too large and the access latency gets
too high, this can slow down register accesses to the point where such access are no longer for all
intents and purposes instantaneous, but instead take up a noticeable amount of time. So instead of
using one, massive register file for each type of numerical data, computer architects use two or three
register files, connected to a few different types of execution units.

Incidentally, if you'll recall the previous article's discussion of op codes, our simple computer used a
series of binary numbers to designate which of the eight registers an instruction was accessing.
Well, in the case of a read these numbers are fed into the register file's interface in order to specify
which of the registers should place its data on the data bus. Taking our 2-bit register designations as
an example, a port on our 8-register file would have two lines that would be held at either high or
low voltages (depending on whether the bit placed on each line was a 1 or a 0), and these lines
would tell the file which of its registers should have its data placed on the data bus.

Superscalar conclusions

Running out of resources like registers isn't the only thing that can stop a superscalar processor
from issuing multiple instructions in parallel. Sometimes, the instructions themselves are arranged
in ways that lock them into a specific, sequential execution order. In such cases, the processor has to
jump through some hoops in order to extract instruction-level parallelism (ILP) from the code
stream. I'll cover these challenges in the next article, so stay tuned.

Combining pipelined and superscalar execution
Let's take a look at another version of one of the diagrams above. This version shows all four
"stages" of the basic pipeline, but with the twist that the number of actual pipeline stages in the
execute "stage" (or execute phase) varies depending on the particular execution unit.

4-stage pipeline with pipelined execution units

The green ALU above has only one stage in its execution pipeline. As I mentioned previously,
arithmetic-logic operations are the simplest and shortest type of operation, so they need the smallest
number of execution stages. The purple floating-point unit, on the other hand, has 4 execution
stages in its execution pipeline. Again, this is because floating-point operations are complex and
take a long time to complete. In order to keep from having to slow down all of the processor's
stages in order to accommodate a single-stage FPU, most CPU designers divide FPU's execution
pipeline into multiple, single-cycle stages.

Let's return to our assembly line analogy one last time in order to tie things together. Now that the
Ars Extinction LE has done so well, we'd like to diversify our product line by adding both a souped
up sport model with a beefier engine, the Ars Extinction Turbo, and an economy model with a
smaller engine, the Ars Extinction (with no suffix). The only way in which any of our three SUVs
differ is in the type of engine they have. This being the case, we can the most economical use of our
existing capacity by making changes only to Stage 2 of our assembly line. We decide to hire two
additional Stage 2 Crews for a total of three Stage 2 Crews--one to install each type of engine. We

set up the two new crews with work areas on the floor, and change our workflow as follows.

Stage 1: build the chassis.

Stage 2 economy: drop the
economy engine in the

chassis.

Stage 2 LE: drop the LE
engine in the chassis.

Stage 2a Turbo: drop the
Turbo engine in the chassis.

Stage 2b Turbo: reinforce
the chassis

Stage 3: put doors, a hood, and coverings on the chassis.

Stage 4: attach the wheels.

Stage 5: paint the SUV.

After the chassis leaves Stage 1, it goes to one of the three versions of Stage 2. Each of the versions
of Stage 2 send their completed work onto the same Stage 3, and the assembly line moves on
normally from there.

Notice that Stage 2 Turbo is actually composed of two, one-hour stages: Stage 2a Turbo, in which
the engine is placed in the chassis, and Stage 2b Turbo, in which the chassis is reinforced so that it
can handled the increased horsepower of the Turbo engine. So for an Ars Extinction Turbo, the
complete assembly line consists of six actual stages.

To illustrate both pipelining and parallel execution in action, consider the following sequence of
three SUV orders sent out to the empty factory floor, right when the shop opens up:

1. Ars Extinction Turbo
2. Ars Extinction Turbo
3. Ars Extinction LE

Now let's follow these three cars through the assembly line during the first four hours of the day.

Hour 1: The line is empty when the first Turbo enters it and the Stage 1 Crew kicks into action.

Stage 1: Ars Extinction Turbo

Stage 2 economy: (empty) Stage 2 LE: (empty)
Stage 2a Turbo: (empty)

Stage 2b Turbo: (empty)

Stage 3: (empty)

Stage 4: (empty)

Stage 5: (empty)

Hour 2: The first Turbo moves on to Stage 2a, while the second Turbo enters the line.

Stage 1: Ars Extinction Turbo

Stage 2 economy: (empty) Stage 2 LE: (empty)

Stage 2a Turbo: Ars
Extinction Turbo

Stage 2b Turbo: (empty)

Stage 3: (empty)

Stage 4: (empty)

Stage 5: (empty)

Hour 3: Both of the Turbos are in the line being worked on when the LE enters the line.

Stage 1: Ars Extinction LE

Stage 2 economy: (empty) Stage 2 LE: (empty)

Stage 2a Turbo: Ars
Extinction Turbo

Stage 2b Turbo: Ars
Extinction Turbo

Stage 3: (empty)

Stage 4: (empty)

Stage 5: (empty)

Hour 4: Now all three cars are in the assembly line at different stages. Notice that there are actually
three cars in various versions and stages of "Stage 2," all at the same time.

Stage 1: (empty)

Stage 2 economy: (empty)
Stage 2 LE: Ars Extinction

LE

Stage 2a Turbo: (empty)

Stage 2b Turbo: Ars
Extinction Turbo

Stage 3: Ars Extinction Turbo

Stage 4: (empty)

Stage 5: (empty)

In case it isn't obvious, Stage 2 in our analogy is the execute phase of the pipeline. In a superscalar,
pipelined processor multiple types of instructions (e.g. floating-point, integer, etc.) can be in
multiple stages of execution simultaneously.

If you replace the stages in the charts above with the four standard CPU pipeline stages, also
replacing economy with memory access instructions, LE with ALU instructions, and Turbo with
floating-point instructions, it should be obvious how a three-way superscalar, pipelined CPU with a
two-stage floating-point pipeline would execute the following code:

1. FADD A, B
2. FADD C, D
3. ADD E, F

(Note that FADD is the mnemonic for the floating-point add instruction.)

Try working back through the assembly line example with the recommended replacements in order
to get a feel for how a real processor would handle the code above.

Conclusions
Both pipelined and superscalar execution are ways of enlarging the processor's "window" on the
code stream. Because the code stream is always sequential, enlarging the window means making it
longer so that it encompasses more sequentially ordered instructions. As the processor enlarges the
window via these two techniques, it gains the ability to hold and to work on more instructions
simultaneously. Now, think about that for a minute. Both superscalar and pipelined execution are in
some sense both forms of parallel execution. They both involve the simultaneous processing of
multiple instructions.

As we widen our window on the code stream, though, the very sequential nature of that stream
makes it harder and harder for the processor to do useful work on all of those instructions at once.
This is because the code stream was "meant" to be serial, and the results of many instructions often
depend on the results of prior instructions. In other words, the instructions that make up the code
stream are interdependent in complex ways that make it hard to rearrange them and get the same
results. The next article will shed some light on the nature of that interdependence, as well as on the
ways that CPU architects try to overcome the limitations it imposes.

	Understanding Pipelining and Superscalar Execution
	Part II of Understanding the Microprocessor
	 by Jon "Hannibal" Stokes

	Introduction
	Pipelining Explained
	Basic instruction flow
	Pipelining and clock speed
	Some concluding remarks on pipelining

	Superscalar execution
	One challenge to superscalar design: structural hazards
	Excursus: the register file
	Superscalar conclusions

	Combining pipelined and superscalar execution
	Conclusions

