Improvements in the Intel® Core™?2 Penryn Processor
Family Architecture and Microarchitecture

James Coke, Mobile Microprocessor Group, Intel Corporation
Harikrishna Baliga, Mobile Microprocessor Group, Intel Corporation
Niranjan Cooray, Mobile Microprocessor Group, Intel Corporation
Edward Gamsaragan, Mobile Microprocessor Group, Intel Corporation
Peter Smith, Mobile Microprocessor Group, Intel Corporation
Ki Yoon, Mobile Microprocessor Group, Intel Corporation
James Abel, Software Solutions Group, Intel Corporation
Antonio Valles, Software Solutions Group, Intel Corporation

Index words: SSE4.1, super-shuffle, radix-16, MOVNTDQA, streaming reads, CLI, STI, return stack

buffer, super shuffle, SMC detection, Inclusion filter

Citation for this paper: Harikrishna Baliga, Niranjan Cooray, Edward Gamsaragan, Peter Smith, Ki Yoon,
James Abel, Antonio Valles “Original 45mn Intel® Core™2 Processor Performance” Intel Technology
Journal. http://www.intel.com/technology/itj/2008/v12i3/3-paper/1-abstract.htm (October 2008).

ABSTRACT

Intel® Corporation continuously seeks to improve the
performance of each Intel Architecture microprocessor
generation through architectural initiatives as well as
process and circuit improvements. The predecessor to
the Penryn family of processors, the 65nm Intel Core
microarchitecture, codename Merom, led the competi-
tion in performance. This paper illustrates architecture
techniques used by Intel in the family of processors to
maintain this leadership position.

The new SSE ISA improvements (dubbed SSE4.1) are
discussed, and we look at how the Penryn family of
processors was able to utilize the Merom SSE
enhancements to both enable SSE4.1 and improve
legacy instructions. The instruction set is also exam-
ined to determine how instructions were targeted to
improve various super-scalar workloads.

The paper explains how in the Penryn family of
processors, the divide instructions are updated from
Radix-4 to Radix-16. To minimize the hardware
investment, integer divides are handled as floating
point divides, so conversion techniques between
integer and floating point are also discussed.

There were many other changes to improve the
performance of the family of processors including
improved data forwarding from stores to loads,

removal of serialization from Set Interrupt Flag Clear
Interrupt Flag (STI CLI), enhanced Self-modifying
Code (SMC) detection, and “renaming” of the Return
Stack Buffer.

INTRODUCTION

The family of processors is the latest production
version of the Intel® Core™2 and Intel Xeon®
product lines implemented on Intel’s 45nm Hi-k silicon
process. The Penryn microarchitecture is based on the
65nm Intel® Core™2 microarchitecture (codename
Merom). A significant component of the Penryn value
proposition was the addition of architectural and
microarchitectural performance enhancements above
the expected conversion to 45nm, so there was a strong
desire to improve the performance of the architecture
over that of its predecessor, the 65nm Intel Core™ 2
microarchitecture. There are many techniques to
improve performance on a microprocessor, and each
brings its own value to the final result. In this paper, we
examine various architectural and microarchitectural
changes that were used to attain the goal of improved
performance. The majority of the performance im-
provements achieve a performance benefit on existing
binaries, while the SSE4.1 changes require software
changes to enable the added performance. A detailed
discussion of the tradeoffs leading to these changes and
the performance evaluation are documented in “45nm

Improvements in the Intel™ Core™2 Penryn Processor Family Architecture and Microarchitecture 179

Intel Technology Journal, Volume 12, Issue 3, 2008

Core 2 Silicon Performance Enhancements” [1]. In this
paper we focus on actual changes that led to a
successful result.

SUPER SHUFFLE

One shuffler is better than two

Merom architecture dramatically improved SSE perfor-
mance through a simple but highly effective method—
doubling the width of SSE execution from 64 bits to 128
bits by instantiating two 64-bit execution units side by
side and adding two small shuffle units to communicate
between the 64-bit halves that handled only quad words.
While increasing the execution width to 128 bits
dramatically improved performance, the 64-bit “wall”
between the execution halves was left in place.

The 64-bit wall caused some legacy instructions to be
slower than would be expected. For example, the
legacy instruction SHUFPS followed these steps in the
Merom architecture:

1. Gathered all input DEST bits to [63:0] side of the
“wall.”

2. Gathered all SRC bits to the [127:64] side of the
“wall.”

3. Shuffled according to the immediate instruction.

SHUFPS output bits [127:64] always come from the
SRC, and output bits [63:0] always come from the DEST,
so we had to move SRC bits [63:0] to the upper half of the
SSE execution unit. SHUFPS output bits [63:0] always
come from the DEST input, so we had to move DEST
bits [127:64] to the lower half of the SSE unit.

Some of the performance penalty of having three
operations is covered by the Merom architecture
having shuffle units on two ports as well as another
SSE shuffler that handled only 64-bit data sizes on a
third port.

The family of processor’s solution to this problem is to
merge the two shuffle units into a single Super-Shuffle
unit that does not have a 64-bit wall. The Super-Shuffle
is significantly more costly in terms of routing, but the
added area cost is covered by merging the area from
the two old shuffle units into the Super-Shuffle.

In the Penryn family of processors, the SHUFPS
shuffling algorithm becomes:

1. SHUFPS!

While the Merom algorithm had a nominal throughput
of 1, it used three operations. The implementation also
has a throughput of 1, but it uses only one operation,
leaving more execution bandwidth for other instruc-

tions. In the architecture we reduced the SHUFPS
latency from 2 to 1.

We made similar improvements to SSE instructions
PACKxSxx, PUNPCKxxx, PHADD* PSHUFB,
PALIGNR, PINSRW, PEXTRW, UNPCKLPS,
UNPCKHPS, HPADDPS, HSUBPS, and PSHUFD.

INTRODUCTION TO SSE4.1

Many of the SSE4.1 instructions were created by
noticing patterns in kernels that were commonly
repeated using multiple instructions and that could
be readily converted to a single instruction in hard-
ware. Some of the instructions fill in gaps in the
existing instruction set such as the new PMINXxx,
PMAXxx, PEXTRx, PINSRx, PACKUSDW,
PCMPEQQ, and PMULLD. PMULDQ is the signed
version of PMULUDQ. Please refer to the Software
Developer’s Manual for details [4].

The Super Shuffle breaking the 64-bit wall is a key
enabler of many SSE4.1 instructions’ performance
improvement. The PMOVSX, PMOVZX, PEXTRx,
PINSRx, and INSERTPS all require the new Super
Shuffle to realize their full potential. Figure 1 shows
PMOVZXDQ moving data across the 64-bit wall
without a special operation to move data from the low
64 bits to the high 64 bits. The MPSADBW and
PTEST instructions also depend on crossing the 64-bit
boundary albeit in other execution blocks.

SRC
‘12?:96 95:64 63:32 31:0
‘ 0's 9564 | 0s | 310
DEST

Figure 1: PMOVZXDQ crosses 64-bit boundary on the
Sfamily of processors without a special 64-bit operation.

SSE4.1 instructions DPPS, DPPD, and INSERTPS
solve the problem of requiring additional instructions
to selectively zero portions of the register. This zeroing
effectively compresses two instructions into one for
INSERTPS and four instructions into one for DPPS
and DPPD.

As shown in Figure 2, DPPD and DPPS are the first
floating-point SSE instructions to have multiple float-
ing-point operations.

Improvements in the Intel™ Core™2 Penryn Processor Family Architecture and Microarchitecture 180

Intel Technology Journal, Volume 12, Issue 3, 2008

127:64 63:0 SRC

127:64 63:0 ‘

‘ _ _ Bidhd | DEST
* 0 *

Imm[3] — 7N A— Imm[2]

DEST[127:64] DEST[63:0]

‘ 0

Figure 2: DPPD provides zeroing after both floating-
point operations.

Two new rounding instructions, ROUNDPS and
ROUNDPD, provide rounding of floating-point va-
lues to integers and return the values in floating-point
format. The rounding control is selectable from either
the immediate instruction or MXCSR.RC. The user
also has control over suppressing Precision Exceptions
based on an immediate bit.

Prior to SSE4.1, SSE instructions always operated on
subsets of 128 bits. PTEST is the first SSE operation to
operate on the entire 128 bits as a single entity. PTEST
is very useful for detecting all 0s and all 1s and
reporting the result in the flags to simplify decisions.

MPSADBW performs a series of eight 4 X 4 SAD
(Sum of Absolute Differences) operations across an 8-
byte window of the destination. The starting point for
the SRC and DEST windows is selectable using the
immediate instruction.

PHMINPOSUW forms a very useful counterpart to
MPSADBW because it finds the minimum word and
returns both the value and position of the minimum
word.

INSERTPS is a very generalized insertion between
XMM registers. It allows any packed single quantity to
be selected from the source and inserted into any
position in the destination. The control to select the
packed single position from the source and the position
to insert the packed single in the destination are
controlled by the instruction immediate. INSERTPS

also allows selected packed single positions in the
destination to be zeroed, also under control of the
immediate.

EXTRACTPS sounds as if it should be the comple-
ment of INSERTPS, but it isn’t. EXTRACTPS
extracts to a General Purpose (GP) Register instead
of to another XMM register, which makes
EXTRACTPS very similar to PEXTRD. The only
difference between EXTRACTPS and PEXTRD is the
handling of REX.W. EXTRACTPS will zero extend
the 32-bit value, whereas PEXTRD will become the 64-
bit instruction PEXTRQ.

The BLENDxx and BLENDVxx instructions are a
per-element select of the source or the destination
register. Control of the select comes from the
immediate for BLEND instructions, and for BLENDV
instructions the control comes from the element sign
bits of a third XMM register that must be XMMO.

STREAMING READS

Previous generations of Intel architecture processors
supported a fast write mechanism from the processor
to memory (such as to video and graphics memory) via
streaming non-temporal writes. This greatly improved
the write bandwidth from the processor to memory.
However, up to now, Intel architecture was lacking a
fast memory read mechanism for memory regions that
are typically mapped as uncacheable with weak
ordering—typically graphics video memory. The fast
cacheable memory read mechanism cannot be utilized
in this case because we do not want these data to be
cached in the processor caches. In addition, we also do
not want this type of data to expel useful data from the
processor caches. The SSE4 instructions in the
processor introduced a new streaming read IA
instruction, MOVNTDQA, to fill this void. This new
instruction, which 1is introduced on the second
production stepping of the architecture, performs very
high-bandwidth reads from weakly ordered, uncache-
able (USWC) memory regions, typically used for
graphics memory, without any pollution of the
processor caches. This gives the programmers the
ability to utilize the fast execution units inside the
processor to operate on graphics-type data, which until
now was not desirable due to very slow read
bandwidth by the processor.

By allowing fast non-coherent transfers across PCle or
access to UMA graphics directly, streaming reads help
increase the performance of analog and uncompressed
high-definition video capture (20-30 percent of these
workloads involve readback). It also makes hardware
accelerated transcode (encode followed by decode)
and video motion estimation feasible, with the fast

Improvements in the Intel™ Core™2 Penryn Processor Family Architecture and Microarchitecture 181

Intel Technology Journal, Volume 12, Issue 3, 2008

readback mechanism after HW accelerated decode in
the northbridge.

The semantics of the MOVNTDQA instruction is to
load an aligned 16-byte quantity. It is a demand load
operation with a streaming hint. When this instruction
is used to load 16 bytes from a memory region that is
mapped as USWC, the processor automatically con-
verts the load operation to a ‘‘streaming” load
operation. By treating the load as a streaming load
operation, the processor automatically converts the 16-
byte load to a full cache line (64-byte) load operation
and uses the maximum Front Side Bus (FSB)
bandwidth to transfer the data from memory. For a
333-MHz FSB (1.333-GHz data transfer rate) we could
achieve a 10.6-GB/s data transfer rate from USWC
memory using MOVNTDQA loads, which is the same
maximum bandwidth achievable by cacheable loads.
This is compared to the maximum data transfer rate of
1.3 GB s for loading from USWC memory using non-
streaming load instructions, assuming the FSB is 100
percent utilized.

When the processor treats a load operation as a
streaming type (via MOVNTDQA), the entire USWC
cache line (aligned 64 B) that contains the address of
the load is loaded into an internal processor buffer,
and the requested 16 bytes of data are served. The use
of a temporary buffer for streaming along with a read-
once policy helps maintain the uncacheable semantics
of the USWC memory type. As shown in Figure 3, this
internal buffer is not drained at the completion of the
requested 16-byte load but is kept alive so that
subsequent NT loads (MOVNTDQA) can be serviced
from the same buffer rather than initiating new
memory transactions. Thus, a program issuing four
MOVNTDQA loads will be satisfied by a single buffer
and a single memory transaction. A program that is
designed to loop on four MOVNTDQA loads (such as
operating on a block of memory, loading one cacheline
at a time, and operating on it) can achieve data-read
bandwidths up to the maximum FSB bandwidth. Once
the entire contents of the temporary buffer are
consumed (by four MOVNTDQA load operations),
the buffer is automatically deallocated. Since the
processor contains a limited number of internal
temporary buffers, care must be taken while program-
ming to not overflow or underutilize these resources.

Here is an example usage of MOVNTDQA instruc-
tions to efficiently utilize the streaming read buffers.
Note that eax addresses are aligned to a line boundary.

MOVNTDQA xmm0, [eax]
MOVNTDQA xmml, [eax+ 16]
MOVNTDQA xmm2, [eax+32]

MOVNTDQA xmm3, [eax+ 48]
PAVGB xmmO, xmml
PAVGB xmm2, xmm3

PAVGB xmmQ, xmm2 <Code 1>

Temp Buffer inside

L1D

o) r-ﬁml

Figure 3: MOVNTDQA allows use of the full temp
buffer before starting a new bus cycle.

SSE4.1 EXAMPLES

SSE4 instructions were created to provide speedup on
various types of applications. Two instructions in
particular, MPSADBW and PHMINPOSUW, in
combination with the Super Shuffler, can provide
large performance improvements in block-matching
algorithms commonly used in motion estimation. A
detailed discussion on the block-matching performance
(a 1.6x—3.8x function-level speedup) and how these
instructions provide the performance improvements is
documented in Penryn Silicon Performance [1].

Two other SSE4 examples are discussed in this section.
First, we briefly showcase the measured performance
of streaming loads [2] to conclude the discussion in the
previous section. Then we discuss the DPPS DPPD
instruction and usage models where DPPS DPPD will
improve performance. We provide an example that
uses the DPPS instruction to showcase how it and
another SSE4.1 instruction (EXTRACTPS) can be
used to speed up collision detection performance.

Streaming loads

In this section we continue the discussion from the
previous section by briefly examining streaming loads
measured results and optimization guidelines [2]. To
maximize streaming load throughput, users need to
utilize the streaming load buffers of two cores at the
same time. That is, two software threads executing on

Improvements in the Intel™ Core™2 Penryn Processor Family Architecture and Microarchitecture 182

Intel Technology Journal, Volume 12, Issue 3, 2008

two different cores perform streaming loads from
separate USWC parts at the same time and copy the
data into separate WB cacheable memory buffers (see
Figure 4). The WB buffers have to be small enough to
fit in the first-level cache to minimize resource
contentions, and the four streaming loads making up
one cacheline (64 bytes) need to be done close together.

Graphics Memory

Main Memory

MMemory
Controller
Hub (MCH

Intel Core2 Processor
code-named Penryn

Figure 4: Example of streaming load: accessing graphic
card memory and utilizing two threads to maximize
memory throughput

Tests were conducted on a 45nm Intel Core 2 desktop
processor (E7200) with a 1067-MT sec FSB.

The theoretical memory throughput (cacheable and
uncacheable memory) can be calculated as follows:

Theoretical memory throughput

=FSB Transfer/sec * bytes/transfer
=1067 MT/sec * 8 B/T
=8.53 GB/sec

The single-threaded streaming load implementation
that utilized one core’s streaming load buffers was
measured to provide approximately 50 percent of the
theoretical memory throughput. The dual-threaded
streaming load implementation that utilized the
streaming load buffers of two cores was measured to
provide approximately 90 percent of the theoretical
memory throughput. Utilizing two core’s streaming
load buffers is the recommended way to get the highest
memory throughput out of streaming loads.

Single-Precision Floating-Point Dot Product

The Dot Product of Packed Single Precision Floating-
Point Values (DPPS) instruction and the DPPD
instruction for Double Precision Floating-Point num-
bers can provide performance benefits in games,

multimedia, and high-performance computing applica-
tions. This instruction has a high latency due to
multiple numbers of operations being done at once.
Thus, this instruction provides the most benefit in
situations in which the Array of Structures (AOS) data
layout is being used as opposed to the Structure of
Arrays (SOA) data layout [3]. The AOS layout is
usually not Single Instruction Multiple Data
(SIMD)—friendly except for the horizontal instruc-
tions such as DPPS and HADDPS. Users can use these
horizontal instructions to avoid the heavy data
swizzling [3] costs in converting to the SOA data
layout. An SSE3 implementation of a dot product of
Vector Length 4 in the AOS format can be implemen-
ted by using the HADDPS instruction as shown:

void dot_product_vlength4_ SSE3
(float *src,float *dst, int Count)
{
__asm {
mov esi, dword ptr [src]
mov edi, dword ptr [dst]
mov ecx, Count
start:
//a3, a2, al, a0
movaps xmm0, [esi]
//a3*b3,a2*b2,al*bl,a0*b0
mulps xmm0, [esi + 16]
//a3*b3 4+a2*b2,al*bl+al0*b0,
//a3*b3 4+a2*b2,al*bl+al0*b0
haddps xmm0, xmmO
movaps xmml, xmmO
psrlg xmmO, 32
addss xmm0, xmml
movss [edi], xmmO
add esi, 32
add edi, 4
subecx, 1

jnz start

3 <Code 2>

Improvements in the Intel™ Core™2 Penryn Processor Family Architecture and Microarchitecture 183

Intel Technology Journal, Volume 12, Issue 3, 2008

Notice that the SSE3 implementation of the dot
product requires the MULPS+HADDPS +
MOVAPS + PSRLQ + ADDSS instructions. The
SSE4 implementation replaces all of these instructions
with one: DPPS (Code 3).

void dot_product_vlengthd_SSE4
(float *src,float *dst, int Count)
{
__asm {
mov esi, dword ptr [src]
mov edi, dword ptr [dst]
mov ecx, Count
start:
movaps xmm0, [esi]
dpps xmm0, [esi + 16]
movss [edi], xmmO0
add esi, 32
add edi, 4
sub ecx, 1

jnz start

} < Code 3>

Table 1 shows the measured performance of the two
different dot product implementations in AOS data
layout as compared to the C implementation. The
DPPS instructions can provide performance speedups
on multiple vector matrix operations that require a dot
product such as vector normalization [3] and collision
detection.

Table 1: Performance of dot product implementations.

Implementation Cycles/Loop Speedup over C
C 9.8 1.0 x

SSE3 7.8 1.26 x
SSE4 5.7 1.72 x

COLLISION DETECTION

The dot product can be used for collision detection in
games. This is another example of using the DPPS
instruction in an AOS layout. In this example, the
DPPS instruction is used to speed up collision
detection of two spheres. To explain collision detec-
tion, consider two circles. The circles are said to have

collided if the sum of radii is greater than or equal to
the distance between the centers (Figure 5). This same
equation applies to spheres, except in that case there is
a z-axis that contributes to the distance formula.

A (.0)

Y1+

d = N ()2 + (¥4-¥20)

T @ B: (0.9,

L | B
T I Ll

Hy Ha

Figure 5: Circles|spheres collide if the sum of the radii is
greater than or equal to the distance between the two
centers.

Two spheres collide if

The distance between two centers < = sum
of radii

sart ((x1 - x2)%4 (y1 - y2)?+ (z1 - z2)?)
<=rl 4+ r2

(x1 - x2)24+ (vl - v2)%4+(z1 - z2)% <=
(rl + r2)?2

Dot Product
(rl 4+ r2)?2

(point A, point B) <=

A% B< = (rl 4+ r2)? (1)

As an example, imagine a fast-moving, hot fire particle
about to incinerate other objects/particles. Collision
detection can be used to find out which of these objects
comes in contact with the fire particle and will need to
be set on fire (see Figure 6).

Improvements in the Intel™ Core™2 Penryn Processor Family Architecture and Microarchitecture 184

Intel Technology Journal, Volume 12, Issue 3, 2008

Figure 6: Collision detection example: one fast-moving
fire particle is about to slam into and incinerate other
objects/particles.

The C code implementation (Code 4) uses Eq. 1 to
detect sphere collision between the fire particle and a
thousand other particles.

struct VEC3

{

float x,v, z;

float dot () const

{return x*x + y*y + z*z;}
J3

VEC3 operator —

(const VEC3 a, const VEC3 b)

{
VEC3 res;
res.x = a.x - b.x;

res.y = a.y - b.y;
res.z = a.z -b.z;
return res;

}

struct SPHERE

{

VEC3 center;

float rad;

5

void sphere_collision_C
(SPHERE *spl, SPHERE *sp, int *coll)
{
for(int i =0; i<gNumSpheres;i+ +)
{
float center_distance_squared =
(spl[i] .center-sp->center) .dot () ;
float radii_sum_squared =
(spl[i].rad 4+ sp->rad)*
(splli] .rad + sp->rad);
if (center_distance_squared <
radii_sum_squared)
{
//which spheres collided
coll[i]l+ +;

}

} <Code 4>

The collision detection code can be optimized with
SSE4.1 instructions. One single DPPS instruction can
be used to make the three different calculations in
Eq. 1: the dot product of AB: (x1—x2)>+ (yl—y2)> +
(z1—22)%, the radii sum: (r1 4+ 1r2)% and the subtraction

of the radii sum from the dot product.

res = A B— (rl + r2)*

Collision occurred if res’s sign-bit is set (Code 5).

int sphere_collision_intrinsics (SPHERE

*spl, SPHERE *sp, int *coll)

{

int res;

_ declspec(align(1l6))
static long _mask[4] =
{0,0,0,0x80000000};

_ ml28 s,sl,s2;

_ ml28 _maskl28 =
(__ml28)_mask;

s = _mm_load_ps ((float *)sp) ;
//set sign bit to add: rl - (-r2)

Improvements in the Intel™ Core™2 Penryn Processor Family Architecture and Microarchitecture

185

Intel Technology Journal, Volume 12, Issue 3, 2008

s = _mm_xor_ps(s,_maskl28);
for(int i =0;i<gNumSpheres;i+ +)
{

sl = _mm_load_ps((float *)spl) ;
sl = _mm_sub_ps(sl,s);

//set sign bit on radii sum

s2 = _mm_xor_ps(sl,_maskl28);
//s1[0-31] =
//center_distance_sgaured -
//radii_sum_squared

sl = _mm dp_ps(sl,s2,0xff);
//get sign bit of subtraction
res = _mm_extract_ps(sl,0);
res >>= 31;

//coll if radii_sum_squared

// > center_distance_squared
res &= 1;

coll[i] + = res;

}

} <Code 5>

To use a single DPPS instruction to do all of this, we
had to use a few SIMD tricks. First, we laid out the
data so x,y,z,r of the sphere could be loaded with one
aligned load. Then we used a mask to modify the sign
bit of one of the radii before the packed subtract. We
did this so that the subtract operation actually causes
an addition, (r;-(-r,)). Then we used the mask again to
modify the sign bit of one of the radii sums before the
DPPS instruction. This causes the radii sum squared to
be subtracted from the dot product of A and B.

These are the contents of the __m128 variables before
the DPPS instruction:

//sign bit set on upper 32-bytes of _ml28
s2 = [-(rl+1xr2), z1-22, yl-y2, x1-x2]

sl = [r1l+1r2, zl1-22, yl1-y2, x1-x2]

These are the contents of s1[0-31] after the DPPS
instruction: If s1[0-31] is negative, then the radii sum

squared is greater than the dot product of A and B,
and a collision occurred.

Another SSE4.1 instruction, EXTRACTPS, is used to
extract the single precision floating-point value from
an XMM register to a GP register to check if the sign-
bit is set. The EXTRACTPS instruction removes the
branch and enables GP registers to be used to do data
manipulations. Both the DPPS and EXTRACTPS
instructions provided the 1.5x speedup over C as
shown in Table 2.

Table 2: SSE4.1 Collision detection speedups.

Implementation Cycles/Iteration C Speedup
C 14.3 1.0 x
SSE3 17.7 0.8 x
SSE4 9.5 1.5 x

The analogous SSE3 solution has to use
MULPS + HADDPS + MOVAPS + PSRLQ + ADDSS
instructions as shown in Code 2 for the dot product. It
also has to move the result to a floating-point register
to do the comparison similar to the C-code. The SSE3
implementation has too large of a latency to provide a
speedup over C.

In this section we provided two SSE4.1 examples. We
discussed the measured performance of the streaming
loads and provided the recommended usage scenario.
We also discussed the DPPS instruction and the
recommended usage scenarios for this instruction as
demonstrated in the collision detection example.

NEW RADIX-16 DIVIDER

The new Radix-16 floating-point divider with variable
latency Radix-16 integer divide capability replaces the
Merom Radix-4 floating point divide and Radix-2
square root and integer divide hardware. The preced-
ing algorithm dated back to the Pentium® divide
implementation.

Motivation and implementation

Divide hardware is costly both from die size and
performance perspectives. Its large size makes it
prohibitive to add multiple units on a single core. On
the other hand, the long latency and low throughput of
divides has a dramatic impact on CPU performance.
The implementation provides a remedy for the latter
by reducing the number of loop iterations for a single
divide.

In the Sweeney, Robertson, and Tocher divide algo-
rithm (SRT) [5-8], the divide operation is broken up
into three parts: pre-processing, loop, and post-
processing. The loop accounts for the predominant
source of the latency and prevents subsequent micro

Improvements in the Intel™ Core™2 Penryn Processor Family Architecture and Microarchitecture 186

Intel Technology Journal, Volume 12, Issue 3, 2008

operations from utilizing the hardware in a pipelined
manner. Specific implementations may choose to
pipeline consecutive operations over the three parts
(for example, a second operation’s loop may be
implemented to begin once the first enters post-
processing). However, any de-pipelining pales in
comparison to the loop latency’s impact to divide
throughput. The latency of different Radix implemen-
tations is shown in Table 3.

Table 3: Divide and Square Root latencies.

Latency in
cycles

Pre + post R2 R4 RI6

processing loop loop loop
Single precision 5t06 28 14 7
Double precision 5to6 57 29 15
Extended precision 5 to 6 68 34 17

The loop latency has a direct correlation to the number
of quotient mantissa bits in any given precision. In
Radix-2, one quotient bit is calculated in every cycle;
thus, the number of cycles in the loop equals the
number of mantissa bits. In Radix-4, two quotient bits
are calculated every iteration. For Radix-16, four
quotient bits are calculated. It can be seen why the
enhanced divider had a profound impact on perfor-
mance: divides were up to 1.75 times faster, and square
roots were up to 3.3 times faster.

The new variable latency integer divide algorithm
utilizes the underlying Radix-16 floating-point divider
without the need to implement a different integer
algorithm or build a separate integer divide unit. The
same exact algorithm can be used on integer numbers
after they undergo an integer normalization and shift
amount recording, prior to the pre-processing per-
formed by modified existing hardware.

In addition to improving performance by moving from
Radix-2 integer divides on the Merom processor to
Radix-16 on the family of processors, the integer divide
operation can finish sooner than what is depicted in
Table 3 depending on the specific data operands. Since
the loop iteration count depends on the number of
quotient bits produced, and given that integer opera-
tions produce an integer quotient and separate
remainder, the integer divide algorithm stops the loop
after the quotient is created and begins post-proces-
sing. However, due to other existing microarchitectural
restrictions, the total divide micro operation latency is
at least 11 cycles, excluding early out conditions (such

as 0 div by n). Thus when there are 17 or more quotient
bits produced but less than 29 bits (for r m32; less than
61 bits for r m64), then there is a further reduction in
latency over the previous algorithm.

Challenges

Historically, implementing high-Radix fast dividers
has been a design challenge. Finding the correct
balance between implementing a high-Radix quotient
and a fast-quotient selection logic (QSL) is a difficult
task. In the family of processors, we addressed this by
applying a new digit-redundant structure and an
implicit bias bits concept to ordinary basic divide
algorithms, such as Non-performed on a binary digit
basis, without rippling the carry forward. Thus, each
digit produces two outputs: the sum and the carry.
After all of the redundant arithmetic is performed,
completion adders are employed to roll in the carry
bits in the final step.

As can be seen in Figure 7 the divider is essentially
double pumped, producing two bits of quotient every
phase to yield four bits per cycle. Contrast this with the
previous Radix-4 design in Figure 8 in which two bits
of quotient were produced per cycle. By using the new
digit-redundant structures in conjunction with the
implicit biasing for selecting the quotient, an efficient
and fast way of selecting the quotient can be achieved
with a small number of bits of the partial remainder
and the divisor. This will allow for fast redundant
implementations of the internal loop computation and
the quotient selection logic. The simplified quotient
selection logic that is based on only a few bits of the
estimated value of the partial remainder will in turn
allow a very fast implementation that enables a
multiple of these QSL blocks to exist in the same
cycle, allowing for very high Radix dividers. The paths
in the main loop and QSL are equalized by over-
lapping them, and they were targeted to a delay of just
MUX delay plus truncated adder/comparator delay on
either path.

Improvements in the Intel™ Core™2 Penryn Processor Family Architecture and Microarchitecture 187

Intel Technology Journal, Volume 12, Issue 3, 2008

Dividend Divisor
¥ L]
Pre-processing
I]
¥ ¥ ¥
I T : 4
hybrid 68b

hybrid 68b
adder

Post-processing
¥
Quotient/remainder

Figure 7: New divider microarchitecture.

CLI/STI PERFORMANCE TUNING

In the Software Developer’s Manual, both the Clear
Interrupt Flag (CLI) and the Set Interrupt Flag (STI)
macro-instructions are said to be non-serializing.
However, due to past microarchitectural simplifica-
tions, both instructions serialized the execution pipe-
line, leaving an unoptimized performance situation.
The serialization was deemed necessary to ensure that
an updated copy of the Interrupt Flag (IF) in System
Flags was ready to be evaluated at the end of every
macro-instruction. Furthermore, the IF masking that
is done at the end of STI needs to occur only when the
IF is transitioning from clear to set and needs an
updated copy of IF at the beginning of the STI
instruction.

It was determined that for multi-tasking operating
systems, the IF can get frequently masked and
unmasked during atomic operations to prevent other
processes from obtaining the context in the middle of
modification. As such, there can be a noticeable
performance degradation due to the aforementioned
CLI STI serialization. Pre-silicon performance simula-
tions showed a 1.3 percent improvement on produc-
tivity workloads if this penalty was removed.

On the processor, instead of post-serializing on a CLI
or STI, a serialization occurs only when the new IF
value is consumed and only if the new value is not yet
updated. Additionally, we added new dedicated hard-
ware to the retirement logic to detect whether the IF
transitions from clear to set during an STI, in order to

PG SRT RADIX-4 DIVIDER

20 -D 0 +D +2D
\
i
D[65-63] 4 v all 69
\ 7-BIT cPA / \ HEL y
g T\;\ 69 70
A D
¥
Q5L LUT P
The QSL LUT | Gt 69-BIT CPA
has a total of
1024 x 3-bit
[3
entries A Rt *
| << 2 |
‘ 70 WY 3
LATCH fa— clk tlk —e] LATCH |
th 47Ry [

Figure 8: Previous divider microarchitecture.

Improvements in the Intel™ Core™2 Penryn Processor Family Architecture and Microarchitecture

188

Intel Technology Journal, Volume 12, Issue 3, 2008

avoid a new pre-serialization condition. The results are
that the throughput of a CLI is 5 cycles, the
throughput of an STI is 8 cycles, and a CLI-STI pair
is 13 cycles, yielding a 2.5 x improvement over the
Merom architecture performance.

INCLUSION FILTER

The inclusion filter enables detection of instructions in
the processor pipeline, mainly to support self-modify-
ing code (SMC). To reduce design impact on this
timing-sensitive area of the processor pipeline, detec-
tion techniques are architecturally minimized to
provide pessimistic estimates. The goal is a logically
optimized solution in which false SMC detection is
sufficiently uncommon such that the resulting perfor-
mance loss is negligible.

Motivation

As the processor pipeline capacity increases, the
inclusion detection solution needed to be re-examined.
The pipeline capacity includes instructions in all stages
and structures between instruction fetch and retire-
ment, which increased substantially when the issue
width was increased for the Merom architecture from 3
to 4. The increased instruction capacity resulted in
increased false SMC detection conditions during
Merom silicon testing, which tended to have a more
limiting impact on server performance. For example,
Transaction Processing Performance Council Bench-
mark C performance increased by 2 percent with
inclusion checking disabled. The Inclusion Filter in the
Penryn processor significantly reduces false SMC
detection by using an alternative technique to filter
from the existing detection mechanism the most
common false detection scenarios.

Solution

Most instructions in the pipeline will also naturally
exist in the Instruction Cache (ICache), so the
Inclusion Filter monitors ICache activity to algorith-
mically identify states in which this common property
is guaranteed (Figure 9). Snoops in this state can then
be filtered from the existing inclusion-detection me-
chanism, and this combination virtually eliminates
false SMC detection.

SMC ~ Bxisting Inclusion
Detection Detection Mechanism
Inclusion| T
P Filter :
[Y
| LRU bits
by
iabhaciin Instruction _
Fetch — Cache

Figure 9: Inclusion Filter reduces false SMC detection.

To increase confidence in this new microarchitectural
solution, it was essential to minimize design complex-
ity. To reduce logic risk and validation requirements,
the Inclusion Filter has a single functional output. To
avoid the risk of frequency degradation, it is logically
separated from the existing ICache structure (which is
ideal for separating logic vs. process-related debug)
and uses only non-timing-critical signals, such as the
ICache LRU bits.

For example, a property of the ICache pseudo-LRU
algorithm is that for an X-way configuration, an
accessed entry will not be evicted until at least log2 (x)
different entries in the same set have been accessed.
Therefore, for an 8-way cache, each set is allowed to
filter at least three ICache evictions prior to resorting
to the existing inclusion detection mechanism. Deter-
mining a “different entry” can be accomplished
without additional storage by detecting a change of
LRU bits. Monitoring changes to specific LRU bits
and other control logic can increase the limit substan-
tially using other similar properties.

When the Inclusion Filter is saturated and finally
allows the existing mechanism to be used, it is more
beneficial to have it return to its reset state than to
continue filtering. From a reset, the average cycles
needed for the Inclusion Filter to resort to the existing
inclusion mechanism is 50 times greater than the cycles
needed to ensure that a fetched instruction is no longer
in the pipeline. Therefore, when the Inclusion Filter is
finally saturated, it takes the opportunity to completely
reset its state, but it disables filtering until it is certain
that all instructions in the pipeline at the time of this
reset have been retired.

In effect, a small window is opened during which the
existing detection method is used, then it is closed for a
very long time (98 percent closed on average). This
translates to a 98 percent reduction in false SMC
detection, and near optimal performance.

Improvements in the Intel™ Core™2 Penryn Processor Family Architecture and Microarchitecture 189

Intel Technology Journal, Volume 12, Issue 3, 2008

RENAMED RSB

A Renamed Return Stack Buffer (RRSB) was added to
improve performance by increasing return prediction
accuracy. The goal was to supplement the existing RSB
by providing a recovery mechanism from a common
source of RSB corruption.

Background

A single function (or procedure) can be called from
multiple places within a program by using a “CALL”
instruction. Exiting the function back to the calling
program can be done with a “RET” (return) instruc-
tion. The CALL instruction is similar to a direct jump
that also pushes the RET address onto the stack (in
memory). The RET instruction is an indirect jump
whose target address is popped from the stack.

The processor’s Branch Prediction Unit (BPU) shares
both its bimodal prediction resources to accurately
predict the existence of CALL or RET instructions and
also its Branch Target Buffer (BTB) to predict the
target of a direct CALL. However, the target of a RET
instruction is dependent on the CALL, so the Return
Stack Buffer (RSB) is used.

All P6 microprocessors have implemented the RSB as
a simple push pop stack structure. This “classic”” RSB
(CRSB) has the following basic behavior:

1. The BPU uses its Linear Instruction Pointer (LIP)
to predict a CALL instruction.

2. The BPU “pushes” the CALL’s Next Linear
Instruction Pointer (NLIP) onto the CRSB stack.

3. The BPU predicts the target of the CALL from the
BTB and redirects the instruction flow.

4. Later, the BPU predicts a RET instruction based on
its LIP.

RET2 on the
wrong path
{no harm done yet)

@ CRSE original state

TOS =*{CALL2 NLIP
CALLL NLIP

CALLZ NLIP
TOS —*CALL1 NLIP

RET2 on the
wrong path

@ RRSE original state @

[+—Alloc

TOS —* CALL2 NLIP
CALL1 NLIP

CALLZ NLIP
TOS —*|CALL1 NLIP

the wrang path
{Overwrites CALL2Z)

[—Alloc

5. The BPU predicts the target of the RET from the
CRSB and redirects the instruction flow.

CRSB corruption

Useful RET predictions in the CRSB are sometimes
overwritten by bogus speculative updates. These bogus
updates should be corrected after a branch mispredic-
tion to ensure accuracy. This requires saving the CRSB
state for each potential misprediction and restoring
that state after misprediction recovery. Practically,
however, we can save only the CRSB Top-Of-Stack
(TOS) pointer that is stored in the Branch Information
Table (BIT). When the CRSB TOS is restored from the
BIT, the contents may have been overwritten while
traversing down the bogus path. For instance, if the
bogus path has a RET followed by a CALL, a valid
return address will be overwritten that will later
result in a performance penalty. The TOS pointer will
be restored, but the CRSB contents are corrupted.
Figure 10 (top) describes this common CRSB corrup-
tion scenario.

Renamed RSB implementation

To address this corruption, we added the “Renamed
RSB” (RRSB) to the Penryn family of processors. The
RRSB is similar to the CRSB, but it incorporates an
additional pointer (Alloc) and a linked-list structure
for updating the TOS. Figure 10 (bottom) shows how
the RRSB is able to recover from bogus updates. The
pointers are updated as follows:

e The CALL NLIP is written to the Alloc entry.
The TOS pointer is adjusted to point to the Alloc
entry, and then the Alloc pointer is incremented
(Column 3 in Figure 10). The Alloc pointer never
decrements. The TOS linked-list is updated to retain the
previous TOS.

CALLS & CALL4 an TOS restored by BIT to
original state

(CRSB corrupted)

TOS —*{CALL4 NLIP CALL4 NLIF
“ALL3 NLIF TOS —* CALL3 NLIF
CALL1 NLIP CALL1 NLIP

CALLS & CALLY on TOS & Alloc restored by
@ the wrong path @ BIT to original state

[—Alloc
TOS —= CALLG NLIP CALL4 NLIP
CALLS NLIP CALL3 NLIPp—=Allac
CALLZ NLIP TOS = CALLZ NLIP
CALL1 NLIP CALL1 NLIP

Figure 10: CRSB vs. RRSB.

Improvements in the Intel™ Core™2 Penryn Processor Family Architecture and Microarchitecture 190

Intel Technology Journal, Volume 12, Issue 3, 2008

e The RET target is read from the TOS entry and uses
the linked-list to adjust the TOS pointer to the
previous TOS. The Alloc pointer is not updated on
RET instructions.

The CALL NLIP is never overwritten and therefore
retains entries that may be lost by the CRSB.

While the RRSB is more accurate on the speculative
path, it overflows (wraps) more quickly since Alloc
never decrements. Therefore, the return prediction
defaults to the CRSB when RRSB detects the wrap
condition. We added a 16-entry RRSB to the
architecture that works in conjunction with the 16-
entry CRSB as shown in Figure 11.

CRSB RRSB

Wrap

Defeature

l

Predicted retum target

Figure 11: RRSB implementation.

CONCLUSION

The improvements described in this paper should
provide the reader a better understanding of the value
architectural and microarchitectural enhancements
have brought to the marketplace above and beyond a
silicon process improvement. Each feature improves
some aspect of performance so that in conjunction
with the frequency improvement, the end user will
realize real value in the product.

For a quantification of the performance improvement,
please refer to the paper “Original 45nm Intel®
Core™?2 Processor Performance™ in [1].

ACKNOWLEDGEMENTS

We thank the following contributors to our paper:
Ronen Zohar for providing the collision detection
example; Ashish Jha for providing the streaming load
kernel white paper; Lihu Rappoport for his contribu-
tion to the Renamed RSB; and Mohammad Abdallah
for his contributions to the development of the divider
and SSE4.1.

REFERENCES

[1] Nisar A., Ekpanyapong M., Valles A., and
Sivakumar K., 45nm Intel® Core™2 Processer
Performance, Intel Technology Journal, Vol. 12,
No. 3, 2008.

[2] Jha A. Yee D. Increasing Memory Throughput
With Intel® Streaming SIMD Extensions 4
(Intel(4) SSE4) Streaming Load. http://
softwarecommunity.intel.com/articles/eng/1248.htm.

[3] Intel® 64 and TA-32 Architectures Optimization
Reference Manual. At http://www.intel.com/
products/processor/manuals/.

[4] Intel® 64 and IA-32 Architectures Software
Developer’s Manual. At http://www.intel.com/
products/processor/manuals/.

[5S] Atkins D.E. ‘Higher radix division using esti-
mates of the divisor and partial remainders.’
IEEE Transactions on Computers, 1968; C-17:
925-934.

[6] Parhami B. Tight upper bounds on the minimum
precision required of the divisor and the partial
remainder in high-radix division. IEEE Trans-
actions on Computers, Vol. 52, No.: 11, No-
vember 2003, pp. 1509-1514.

[71 Wey C.-L., Wang C.-P. Design of a fast radix-4
SRT divider and its VLSI implementation.
Computers and Digital Techniques, IEE Pro-
ceedings, Vol. 146, No. 4, July 1999, pp. 205-210.

[8] ““Design issues in radix-4 SRT square root &
divide unit” Burgess N., Hinds C. ““Signals,
Systems and Computers.” Conference Record of
the Thirty-Fifth Asilomar Conference,Vol. 2,
November 4-7, 2001, pp. 1646-1650.

AUTHORS’ BIOGRAPHIES

Jim Coke is a Staff Architect and Microcoder in Intel’s
Mobile Microprocessor Group in Folsom, CA. He
received his B.S.E.E. degree from the University of
Michigan and his M.S.C.E. degree from the National
Technological University. Jim joined Intel in 1982 and
has worked in product engineering, design, and archi-
tecture. Jim was the lead implementation architect for
SSE4.1. His primary interests are microcode and micro-
architecture. His e-mail is James.S.Coke at intel.com.

Hari Baliga is a Senior Staff Engineer in Intel’s Mobile
Microprocessor Group in Folsom, CA. He received his
Bachelor of Engineering degree from Regional En-
gineering College, Surathkal in India and his M.S.
degree from Arizona State University in Tempe. Hari
joined Intel in 1996 and has worked on many
microprocessors developed by the Folsom Design
Center. His e-mail is harikrishna.baliga at intel.com.

Niran Cooray is a Senior Staff Architect in Intel’s
Mobile Microprocessor Group in Folsom, CA. He
received his B.Sc. degree from the University of

Improvements in the Intel™ Core™2 Penryn Processor Family Architecture and Microarchitecture 191

Intel Technology Journal, Volume 12, Issue 3, 2008

Moratuwa in Sri Lanka and his M.S. degree from
Northeastern University in Boston. Niran joined Intel
in 1995 and has worked on many microprocessors
developed by the Folsom Design Center. Niran worked
as a Senior Design Leader on P6-based microprocessors
before moving on to become a microarchitect for the
Intel® 45nm Core™2 Duo processor. His email is
Niranjan.L.Cooray at intel.com.

Edward Gamsaragan is a Staff Architect in Intel’s
Mobile Microprocessor Group in Folsom, CA, work-
ing there since 1995. For the Penryn family of
processors, he was the microarchitect responsible for
the out-of-order and execution clusters. His current
focus is on next-generation memory technologies. Ed
holds a B.S.E.E. degree from the University of
California at Los Angeles. His e-mail is Edward.Gam-
saragan at intel.com.

Peter Smith is a Senior Architect with Intel’s Mobile
Platform Group in Folsom, CA. For the Penryn family
of processors, he was the architect responsible for the
front-end and MSID clusters. His previous experience
includes software design, system administration, circuit
design, silicon debug, and performance analysis. His
primary interests include probability theory, heuristics,
and creative problem solving. Peter received his B.S.
degree from the University of Wisconsin-Madison and
joined Intel in 1996. His e-mail is Peter.J.Smith at
intel.com.

Ki Yoon is a Senior Staff Architect with Intel’s Mobile
Platform Group in Folsom, CA focusing on micro-
processor microcode and debug. Ki developed micro-
code and played a key role in system debug on the Intel
Pentium® III and the Intel® Core™2 processor
generations. Most recently, Ki was involved in the
definition of the 45nm Intel Core 2 Duo processor
architecture and Intel Virtualization Technology.
He received his B.S. degree from the University of
Texas at Austin in 1994. His e-mail is ki.w.yoon at
intel.com.

James Abel is a Principal Engineer in Intel in Chandler,
Arizona. James obtained a Bachelor’s Degree in Electrical
Engineering from Bradley University in Peoria, Illinois in
1983 and a Master’s Degree in Computer Science from
Arizona State University in 1991. His interests include
computer architectures, performance analysis tools, digital
signal processing, and multimedia algorithms. His email is
James.C.Abel at intel.com.

Antonio Valles is a Senior Software Engineer in Intel in
Chandler, Arizona focusing on broad and in-depth
pre-Si and early-Si tests of Intel microprocessors and
chipsets. Antonio has created multiple internal pre-Si
and post-Si tools and kernels for performance analysis

and coordinates the development of tuning guidelines
for the processors. He received his Bachelor’s Degree
in Electrical Engineering from Arizona State Univer-
sity in 1997. His email is antonio.c.valles at intel.com.

BunnyPeople, Celeron, Celeron Inside, Centrino,
Centrino logo, Core Inside, FlashFile, 1960, InstantIP,
Intel, Intel logo, Intel386, Inteld86, Intel740, In-
telDX2, IntelDX4, IntelSX2, Intel Core, Intel Inside,
Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead.
logo, Intel NetBurst, Intel NetMerge, Intel NetStruc-
ture, Intel SingleDriver, Intel SpeedStep, Intel Strata-
Flash, Intel Viiv, Intel vPro, Intel XScale, IPLink,
Itanium, Itanium Inside, MCS, MMX, Oplus, OverD-
rive, PDCharm, Pentium, Pentium Inside, skoool,
Sound Mark, The Journey Inside, VTune, Xeon, and
Xeon Inside are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United
States and other countries.

Intel’s trademarks may be used publicly with permis-
sion only from Intel. Fair use of Intel’s trademarks in
advertising and promotion of Intel products requires
proper acknowledgement.

Any code names featured in this document are used
internally within Intel to identify products that are
in development and not yet publicly announced for
release. For ease of reference, some code names
have been used in this document for products that
have already been released. Customers, licensees, and
other third parties are not authorized by Intel to
use code names in advertising, promotion or market-
ing of any product or services and any such use of
Intel’s internal code names is at the sole risk of the
user.

*QOther names and brands may be claimed as the
property of others.

SPEC®, SPECint® and SPECfp®™ are registered
trademarks of the Standard Performance Evaluation
Corporation. For more information on SPEC bench-
marks, please see http://www.spec.org

Microsoft, Windows, and the Windows logo are trade-
marks, or registered trademarks of Microsoft Corpora-
tion in the United States and/or other countries.

Bluetooth is a trademark owned by its proprietor and
used by Intel Corporation under license.

Intel Corporation uses the Palm OS®™ Ready mark
under license from Palm, Inc.

Copyright © 2008 Intel Corporation. All rights reserved.

Additional legal notices at: http://www.intel.com/sites/
corporate/tradmarx.htm

Improvements in the Intel™ Core™2 Penryn Processor Family Architecture and Microarchitecture 192

