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ABSTRACT 

The Intel® Core™ Duo processor is the first mobile 
processor to implement Chip Multi-Processing (CMP), 
also known as dual core-on-die. This first implementation 
was carefully chosen to deliver maximum performance for 
a given power. The performance improvement was 
achieved by enhancing the single-core micro-architecture, 
which results in better single-threaded performance, and 
by implementing CMP, which improves the  performance 
of multi-threaded applications and parallel application 
processing. The focus of this paper is to introduce the 
reader to the CMP aspects of the Intel Core Duo 
processor. Since the Intel Core Duo processor was 
designed to be a mobile processor, we examine in detail 
the design considerations that had to be taken into account 
to achieve a balance between performance improvements 
and power savings, and we provide recommendations on 
optimizing the code developed for the Intel Core Duo 
processor so that future applications can take full 
advantage of the new design. 

INTRODUCTION 
The Intel Core Duo processor is the first mobile core to 
implement Core Multi-Processor (CMP) technology on 
one die. The implementation was carefully chosen to 
maximize performance, so it can be used as a general-
purpose processor, and to minimize power consumption, 
in order to extend the battery life and have it fit in a large 
variety of thermal envelopes. The performance 
improvement was achieved by enhancing the micro-
architecture, based on Pentium® M processor-based 
technology, of the single core, and by combining dual 
cores on the same die. In order to achieve the power 
consumption goal, we examined each micro-architectural 

decision with respect to its power/performance benefit. A 
general overview of the processor and its unique features 
can be found in this special issue of the Intel Technology 
Journal [1]. This paper focuses on the multi-core design 
and performance aspects of the processor, but for each of 
the decisions we describe here, we discuss how the power 
and thermal aspects were taken into account as part of our 
decision. 
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Figure 1: Theoretical power consumption for the same 
performance–single thread vs. dual thread 

The first question one might ask is “why choose a CMP 
implementation for a mobile processor”? Figure 1 
compares the power needed to complete the same amount 
of work, at the same execution time, assuming frequency 
scaling vs. using dual cores. In order to conduct the 
comparison, we assume a single-core processor that 
consumes 1 Watt at a given frequency and voltage, as a 
baseline. In order to double its performance one can either 
double both its frequency and voltage respectively, or he 
can double the number of cores (assuming perfect scaling 
of the software). As can be seen in the graph, it is clear 
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that under these simple conditions a better solution will be 
to use parallel execution than to improve the speed of the 
processor to achieve the same performance. It is a known 
fact that the power (P) a processor consumes depends on 
the voltage and the frequency of the processor. In order to 
explain the graph of Figure 1, consider a more realistic 
relationship between the power the processor consumes 
and its voltage and frequency. The basic relationship is 
given by Equation 1: 

Equation 1: P=∝CV2F  

where P stands for power, C for capacitance, V for 
voltage, ∝ is the activity factor and F for frequency. For 
each frequency within the design space, there is a 
minimum V that can support it: we call the pair (Fi, Vi), a 
working point of the processor. As long as Vmin < Vi < 
Vmax, we can approximate that Fi is linearly dependent 
on Vi, and for every (Fj,Vj) such that Vj<Vmin, we set the 
Vj to be equal to Vmin. As a result, within the dynamic 
range of V, the power has a cube relation with the 
frequency, while below Vmin, the power has a linear 
dependency with the frequency. Figure 1 uses Equation 1 
to estimate the power consumption of each configuration, 
but in order to represent more realistic scenario, we use an 
exponent of 2.5 rather than an exponent of 3 (cubical 
relation). Unfortunately, the exponential relation between 
the power and the frequency/voltage is only true as long as 
the working point is within the dynamic-scaling portion of 
the voltage and provided enough parallelism is available 
in the software being used. 

Since Intel Core Duo technology is aimed at the general 
purpose mobile market, the design should be balanced 
between power consumption and performance. Thus, we 
used the following criteria to decide between different 
design alternatives: 

(a) When the system runs single-threaded applications, 
its performance should be the same or better than 
previous-generation Pentium M processors (with the 
same cache size and at the same frequency). 

(b) When the system runs multi-threaded applications, we 
wanted to maximize the performance of the execution 
and preserve power by introducing a new and 
efficient power and thermal control system.  

On top of all the technical hurdles mentioned above, we 
also had to consider the complexity of different solutions, 
since our experience told us that complicated solutions 
consume much power. Thus, for any new feature, the 
performance improvement must be significant enough to 
compensate for its complexity. 

The primary goal of this paper is to discuss the CMP 
implementation and resulting performance. We do not 
focus on the power-saving techniques in Intel Core Duo 

processors since reference [2] covers that aspect of the 
system. However, when we discuss our design alternatives 
and why we chose one solution over another, the reader 
will notice that power savings (both static and dynamic) 
were a major factor in our decisions.  

The rest of this paper is organized as follows: in the next 
section we focus on the CMP implementation. This 
includes the tradeoffs we considered, why we chose the 
current implementation, and their power and performance 
impact. Next, we focus on performance measurements, 
and in last section we extend our discussion to cover 
software optimizations. 

CMP IMPLEMENTATION AND DESIGN 
CONSIDERATIONS 
The Intel Core Duo processor is a new member of the 
Pentium M processor family. Before discussing how CMP 
is implemented, let us describe the implementation of 
current processors in the Pentium M family. 

Background – The Structure of the Pentium 
M Processor 
All the Intel processors in the mobility family that 
preceded the Intel Core Duo processor were uni-
processor, and therefore efficiently support only Single 
Threaded (ST) applications and had the same basic 
structure as presented in Figure 2. 

 

Figure 2: Structure of the memory cluster in the Intel 
Pentium M processor 

Here, all the accesses to the L2 cache, as well as the 
accesses to the main memory and IO space, were under 
the supervision of a single control unit, shown in Figure 2 
as Memory/L2 access control units (also called super-
queue). Using this structure, cacheable requests from the 
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core first looked for the data in the L2 cache and only if 
not found there (L2 miss), were they forwarded to the 
main memory via the front side bus (FSB). Uncacheable 
accesses could be directly sent to the main memory. The 
Memory/L2 access control unit also served as a central 
point for maintaining coherency within the core and with 
the external world. Pentium M processors support the 
MESI [3] coherence protocol that marks each cache line 
as Modifid, Exclusive, Shared, or Invalid. 

In a nutshell, the MESI protocol attaches for each cache 
line a state that can be M-modified, E-exclusive, S-shared, 
or I-invalid. A line that is fetched, receives E, or S state 
depending on whether it exists in other processors in the 
system. A cache line gets the M state when a processor 
writes to it; if the line is not in E or M-state prior to 
writing it, the cache sends a Read-For-Ownership (RFO) 
request that ensures that the line exists in the L1 cache and 
is in the I state in all other processors on the bus (if any).  

The Memory/L2 access control unit manipulates the 
coherency of each level of the caches independently. It 
contains a snoop control unit that receives snoop requests 
from the bus and performs the required operations on each 
cache (and internal buffers) in parallel. It also handles 
RFO requests and ensures the operation continues only 
after it guarantees that no other version on the cache line 
exists in any other cache in the system.   

The CMP Implementation 
At the early stages of the project, we considered three 
alternatives for CMP implementation, as illustrated with 
two structural alternatives in Figure 3. The first option 
(Figure 3a) was to put two single-core Pentium M 
processors, side by side, split the L2 cache among them, 
and communicate between the cores via the FSB or 
another fast interconnect. 

Both other options called for a shared L2 (Figure 3b) with 
a different implementation of the coherence protocol; one 
option called for the same basic MESI table as in a single 
core but "adjusting it" to the new structures, while the 
second option called for a simple version of a directory-
based protocol to improve the performance of the 
proposed structure. 

The “simple” shared L2 implementation called for us to 
take advantage of the fact that the latency of the access to 
the L2 cache is significantly longer than the L1 access 
latency. This difference in latency enables us to 
check/update the status of the cache line in first level 
caches in parallel with L2 access. Therefore, this option 
increases the active power consumption (with respect to a 
single core) for snoop activities, but keeps the static power 
(leakage) the same as the single core, since no additional 
tables are used. 

 

Figure 3: Implementation alternatives 

The directory-based solution calls for extending the MESI 
information, as part of the L2 structure, and keeping 
information regarding the ownership on L2 cache lines. 
Here we assume that snoops are sent to the other core by 
the L2 controller, and only when needed. Thus, when a 
core accesses the line in the L2 cache, the cache controller 
knows if the line is shared with the other cache, and based 
on this information the cache control unit can optimize the 
number of snoops sent to the other L1. This technique 
reduces the active power due to reduced snoop activity, 
but increases the design complexity and the static power 
due to larger tag arrays. 

Using the three criteria described in the introduction, we 
analyzed the performance and power and firstly 
eliminated the first option (3a). The reason for this was 
that it would reduce the performance of ST applications, 
since it provides only half of the cache size for each core. 
We also observed that the use of a split L2 cache could 
cause performance degradation when running multi-
threaded (MT) applications with shared data, preventing 
effective data sharing between the threads, and requiring 
long latencies when moving data from one core to another. 
On top of that, it may reduce the performance of MT and 
parallel application processing since it could not 
dynamically partition the L2 cache  

Deciding between the two implementations of the shared 
L2 cache was a tough task. The performance of the two 
options was very close and so we had to make our 
decision based on power efficiency. We decided to 
implement the simple solution and not the directory-based 
architecture due to its complexity. The directory-based 
solution was found to be less favorable since battery life 
mainly depends on static power consumption and less on 
dynamic power. 
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The general structure of the Intel Core Duo CMP 
implementation is given in Figure 3b. Comparing it with 
Figure 2 shows few structural changes: (1) The core and 
first-level caches structure is duplicated; (2) the traditional 
memory and L2 control unit (super-queue) is partitioned 
into two logical units: the L2 controller that handles all 
the requests to the L2 from the core and from the external 
bus (snoop requests) and a bus control unit that handles 
all the data and IO requests to and from the external bus; 
(3) in order to balance the requests to the L2 and memory, 
we added a new logical unit (represented by the hexagon) 
that aims to guarantee the fairness between the requests 
coming from different cores; and (4) we extended the 
prefetching unit to handle separately hardware prefetching 
by each core. 

The new structure of the shared area allows us to enhance 
the performance while reducing power consumption. The 
new partitioned structure of the super-queue allows us to 
implement new power and performance optimizations, 
since the L2-control unit was designed to be relatively 
small, simple, and fast in order to reduce the latency to the 
L2 cache without increasing the power consumption. The 
Bus Control Unit was designed to be larger and more 
complicated, but since it was found to be more relaxed in 
timing, we could design it to have less leakage and even 
reduce its active power.  

The power and performance results were measured on 
Intel Core Duo silicon and justified the CMP architecture 
we choose. We discuss this later in the paper. 

THE PROTOCOL 
From the external observer, the behavior of a CMP system 
should be looked at as the behavior of a dual package 
(DP) system. For that purpose, Intel Core Duo processor 
implements the same MESI protocol as in all other 
Pentium M processors. 

In order to improve performance, we optimized the 
protocol for faster communication between the cores, 
particularly when the data exist in the L2 cache. A 
noticeable example of such a modification was done in 
order to allow the system to distinguish between a 
situation in which data are shared by the two CMP cores, 
but not with the rest of the world, and a situation in which 
the data are shared by one or more caches on the die as 
well as by an agent on the external bus (can be another 
processor). When a core issues an RFO, if the line is 
shared only by the other cache within the CMP die, we 
can resolve the RFO internally very fast, without going to 
the external bus at all. Only if the line is shared with 
another agent on the external bus do we need to issue the 
RFO externally. 

For most Intel Core Duo systems, when only one package 
exists, this is a very important optimization. In the case of 
a multi-package system, the number of coherence 
messages over the external bus is smaller than in similar 
DP or MP systems, since much of the communication is 
being resolved internally. The number of required 
coherency messages is also much smaller than in the case 
of using a split cache (Figure 3a) which requires all the 
communication between the cores and split L2 caches to 
be done over the external bus. 

PERFORMANCE MEASUREMENTS 
This section describes the different measurements we did 
on an Intel Core Duo processor-based system. We start 
with basic measurements and then discuss the impact of 
programming models and optimizations on the overall 
power and performance of the system. 

Basic Measurements 
Two of the basic requirements we had from the system 
were (1) to keep, or improve the performance of ST 
applications, using the same frequency and L2 cache sizes, 
and (2) to take full advantage of parallel execution, when 
parallelism is available. 

Figure 4 compares the performance of Pentium M 
processor and Intel Core Duo processors, using the same 
platform, running at the same frequency, and executing all 
the programs out of the SpecINT benchmark suite. As can 
be seen, on average, the performance of the Intel Core 
Duo and the Pentium M are the same. 

Figure 5 compares the execution of all the programs out of 
the SpecFP performance benchmark. Here, some of the 
programs show a significant improvement over the 
Pentium M execution on the same platform. The main 
reason is the use of SSE3 new instructions by the compiler 
and a few other performance improvements described in 
[2]. 
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Figure 4: Single-threaded performance–SpecINT 
Core Duo vs. Pentium M (same cache, same platform) 
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Figure 5: Single-threaded performance–SpecFP 
Core Duo vs. Pentium M (same cache, same platform) 

 

After achieving the first goal of keeping the performance 
of an ST application at the same level (or better) as when 
run on a Pentium M processor, Figure 6 shows the 
speedup numbers that various MT applications can 
achieve. 
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Figure 6: MT speedups 

The speedup numbers presented here range from 1.2 to 2, 
which is the theoretical maximum that can be achieved by 
two cores. A closer look at the applications that reveal 
relatively low scalability shows that the main reason for 
that is lack of parallelism within the application. A few 
applications, such as SpecFP rate, suffer from high 
utilization of the bus. In these cases doing the same 
experiment but with a faster bus yields a better scalability. 

Threading Models 
When multi-threading an application, the choice of a 
threading model plays a key role in achieving maximum 
performance scaling. In this section, we discuss the effect 
of “data domain decomposition” and “functional domain 
decomposition” on the performance of an application.  

Data domain decomposition usually results in a balanced 
threading model and is likely to produce a better scalable 

threading behavior when running the application on 
platforms with a higher number of processors. Functional 
domain decomposition is susceptible to imbalanced 
threads due to thread specific performance characteristics, 
and hence load-balancing issues need to be considered. A 
functional domain decomposed model is also likely to 
limit the scalability by any number of processors. One 
very important consideration with imbalanced threading 
behavior in applications is the operating system (OS) 
scheduling of threads on a CMP system (we illustrate this 
with an example in the sections below). 

Applications With Balanced Threading 
Models 
Applications studied here are CPU-intensive, consuming 
95-100% of the CPU with the threads performing equal 
work and consuming equal processing resources. Here, we 
discuss the performance of these applications when they 
run in ST and MT modes. The performance data are 
measured in seconds. 

The graph in Figure 7 indicates performance data for 
running ST and MT versions of the applications. 
Cryptography and Video Encoding applications have two 
MT implementations, and hence, results are indicated as 
MT1 and MT2. MT1 is implemented using a data domain 
decomposition methodology, and MT2 is implemented 
using functional domain decomposition.  

Performance Scaling due to Multi-Threading
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Figure 7: Balanced threading performance 

As indicated in Figure 7, MT applications clearly 
demonstrate significant performance improvement over 
ST applications. Some of the applications have two 
different multi-threaded implementations. For example, 
MT-1, MT-2 versions of the Cryptography workload 
demonstrate a 2x performance improvement as compared 
to the ST version. 

Applications with Imbalanced Threading 
Model 
In this section, we examine the performance implications 
on an application with imbalanced threading models. For 
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this study, a sample game physics engine was created 
(using Microsoft DirectX*). The sample application has 
two parts: 1) Physics Computation (collision detection and 
resolution for graphics objects), 2) Rendering (updated 
positions are drawn onto screen). The application was 
deliberately designed such that balanced and imbalanced 
threading could be studied for a CMP processor:  

a. Balanced: For this implementation, graphical objects 
(and background imagery) were divided into two 
parts and each thread took care of the collision 
detection and resolution of its own set of objects. 

b. Imbalanced: In this implementation, one thread was 
tasked with performing collision detection and 
resolution for the colliding objects while the other 
thread calculated the updated positions. The result 
was the desired goal of the first thread being more 
CPU intensive than the second thread. 

With the two implementations, performance data in 
different power schemes, MaxPerf and Adaptive, are as 
shown below. Adaptive mode here refers to the power-
saving scheme where the OS optimizes overall power 
consumption, by dynamically changing CPU frequency on 
demand, using Intel SpeedStep® technology (the GV3 
technology). The MaxPerf mode refers to the power 
scheme where the processor is always running at the 
highest clock speed.  

Let us discuss the first two data sets in Figure 8 for now.  
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Figure 8: Imbalanced threading performance 

The Imbalanced MT (Imbalanced-MT) implementation 
demonstrates a 2x performance degradation (0.6 scaling) 
when running in the Adaptive power scheme as compared 
to MaxPerf (indicated with the circle in Figure 8). In the 
Imbalanced-MT case, since one of the threads is doing a 
large amount of the work as compared to the other thread, 
the thread performing more work keeps migrating between 
the cores, making effective CPU utilization on the cores at 
~50%. On systems running in “Adaptive” 
(portable/laptop) power mode, this thread migration 
causes the Windows* kernel power manager to incorrectly 
calculate the optimal target performance state for the 
processor. This reduces the operating frequency of both 

cores even when one of the cores is fully utilized in 
Adaptive mode and hence causes degradation in 
performance for the Imbalanced-MT case.  Note that this 
issue may occur while running single-threaded workload 
as well. To address this issue, Microsoft provided a hot-
fix (KB896256) to change the kernel power manager to 
track CPU utilization across the entire package, rather 
than the individual cores and hence calculate the optimum 
frequency for applications.  

The third set in Figure 8 indicates data with the kernel hot-
fix. In this case, the Imbalanced-MT implementation in 
Adaptive mode shows expected performance scaling as of 
MaxPerf mode. With this fix, both cores run at optimum 
frequency, not causing any degradation in Adaptive (PL) 
mode. 

COMPARING SPLIT CACHE WITH 
SHARED CACHE  

Recently, different architectures use a split last-level cache 
in order to achieve a fast time-to-market of a dual-core 
system. Clear downsides of this solution are as follows: 

1. Cache coherent-related events that need to be served 
over the FSB, such as RFO or invalidation signals, 
greatly impact performance and power.  

2. An ST application cannot take full advantage of the 
entire cache. 

The hard partitioned cache may have one significant 
benefit over the unified cache; that is, it may prevent one 
application from significantly reducing the amount of 
cache memory available to an application running on the 
other core. Thus, in this section we compare two systems: 
one uses a split L2 cache and the other uses a unified 
model. In order to make the comparison fair, we present 
speedup numbers and not absolute numbers. 

A sample physics engine game is created (using Microsoft 
DirectX) to perform this study. The application is MT 
using data domain decomposition. The threads are 
synchronized before rendering the updates on the screen. 
Since the dependency among the threads is very minimal, 
we expected to achieve ~2.0x performance improvement 
with the MT version as compared to the ST version.  

The split L2 cache indicated approximately a 1.68x 
performance improvement due to MT. Running the same 
application on the Intel Core Duo processor-based system 
demonstrates ~1.90x scaling as per our expectations.  

The root cause of the difference in the scaling is due to the 
shared L2 cache on the Intel Core Duo system. The 
sample application under study is designed in a way that 
both threads work on data from a shared data structure. 
Hence, on the system with the split L2 cache, to get access 
to the data modified by one processor, the second 
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processor needs to go to main memory, which results in 
many L2 cache misses. Since the Intel Core Duo system 
has a unified L2 cache, a penalty of cache miss and access 
to the main memory is avoided, as the data modified by 
one core can be made available to the other core 
immediately. 

OPTIMIZATION OPPORTUNITIES FOR 
INTEL® CORE™ DUO PROCESSOR 
Like any parallel system, the performance and the power 
of the Intel Core Duo processor may be sensitive to the 
memory access patterns. In this section we review three 
optimizations that are very important for getting the best 
out of the system. 

Efficient Use of the Shared L2 Cache 
Sharing data between two threads on the Intel Core Duo 
processor is fastest when done through the L2 cache. This 
section examines several scenarios for sharing. 

One scenario is when one thread brings the data from 
memory, and the other thread later uses this data directly 
from the L2 cache. If the single-threaded workload needs 
to bring the same data several times from memory but the 
multi-threaded version is carefully designed to use the 
same data by the two threads simultaneously, the MT 
version gains performance by bringing the data less times 
from the memory to the cache hierarchy. Such a design 
can help applications with a larger than L2 cache data set 
and even achieve higher than 2x performance 
improvement. 

Another scenario is when one thread generates the data 
and the other thread consumes it. A couple of variations of 
this scenario are possible and are further explained in the 
“Producer Consumer Models,” Section 5.3 of the Intel® 
CoreTM Duo Processor Optimization Guide[4]. Briefly, 
they are the “Delay” approach and “Symmetric” approach. 
Below is an example of the expected speedup when the 
producer-consumer model is run on an Intel Core Duo 
processor vs. a Dual Core Intel® Xeon® processor vs. an 
Intel Pentium 4 processor with Hyper-Threading 
Technology1 (W = Write, R = Read, xxK = buffer size).  

Not only do these data show the benefit of avoiding the 
bus/memory latency, they also demonstrate how varying 

                                                           
1 Hyper-Threading Technology requires a computer 
system with an Intel® Pentium® 4 processor supporting 
HT Technology and a HT Technology enabled chipset, 
BIOS and operating system. Performance will vary 
depending on the specific hardware and software you use. 
See www.intel.com/products/ht/Hyperthreading_more.htm 
for additional information. 

multi-processor implementations behave in both code 
affinity (functional) decomposition and data affinity (data) 
decomposition threading models. If the 
produced/consumed data set size is bigger than the L1 
data cache size, yet smaller than the L2 cache size, data 
decomposition and functional decomposition yield similar 
performance (assuming the functional decomposition 
implementation is well balanced), and the best 
performance that can be achieved for data sharing. 

Code vs. Data Affinity Performance -- Various Processors
* DP is baseline
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False Sharing Can Reduce Performance 
False sharing happens when two or more threads access 
different address ranges on the same cache line 
simultaneously. This causes the cache line to be in the first 
level cache of the two cores.  

False sharing causes a severe performance penalty if one 
or more of the threads writes to the shared cache line. This 
causes invalidation of the cache line at the first-level 
cache of the other core. As a result, the next time that the 
other core accesses the cache line in question it will have 
to transfer it from the core that wrote it earlier through the 
bus, thereby incurring a major latency penalty.  

Below is an example of code that has false sharing when 
executed by several threads simultaneously.  

int counter[THREAD_NUM]; 

int inc_counter () 

{ 

    counter[my_tid]++; 

    return counter[my_tid]; 

} 
Table 1 lists the penalties that an application can suffer if 
it uses false sharing intensively on an Intel Core Duo 
system. In order to avoid such an unnecessary overhead,  
the programmer needs to avoid false sharing, and in 
particular, needs to make sure it does not occur 
unintentionally in the following cases: 

http://www.intel.com/products/ht/Hyperthreading_more.htm
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• Global data variables and static data variables that are 
placed in the same cache line but are written by 
different threads.  

• Objects allocated dynamically by different threads 
can accidentally share cache lines.  

Table 1: False sharing penalties 

Case Data 
location 

Latency (cycles/nsec) 

L1 to L1 
Cache 

L1 
Cache 

14 core cycles + 5.5 bus 
cycles 

Through L2 
Cache 

L2 
Cache 

14 core cycles 

Through 
Memory 

Main 
memory 

14 core cycles + 5.5 bus 
cycles + ~40-80 nsec 
depending on FSB and 
DDR freq. 

 

Optimize Bus Access Between the Cores to 
Maximize the Bus Bandwidth 
Be careful when parallelizing code sections that use data 
sets exceeding the second-level cache and/or bus 
bandwidth. If only one of the threads is using the second-
level cache and/or bus, then it is expected to get the 
maximum possible speedup when the other thread running 
on the other core does not interrupt its progress. However, 
if the two threads use the second-level cache there may be 
performance degradation if one of the following 
conditions is true:  

• Their combined data set is greater than the second-
level cache size. 

• Their combined bus usage is greater than bus 
capacity. 

• They both have extensive access to the same set in the 
second-level cache, and at least one of the threads 
writes to this cache line. 

To avoid these, we recommend that you investigate 
parallelism schemes in which only one of the threads 
accesses the second-level cache at a time, or that the level 
of using the second-level cache and the bus does not 
exceed their limits. This concept is explained further in 
Section 5.3.5 of the Intel® CoreTM Duo Processor  
Optimization Guide.  

CONCLUSION AND REMARKS 
The full performance potential of the Intel® Centrino® 
Duo mobile technology architecture can be realized by 
efficiently multi-threading applications, using the methods 
detailed in this paper. The use of balanced threading 

techniques is likely to provide optimal performance 
improvements on CMP. Multi-tasking scenarios, one of 
the common usage scenarios, provide a richer user 
experience on the Intel Centrino Duo mobile technology 
system. The shared cache structure is likely to showcase 
better performance scaling for MT applications when the 
threads work on shared data sets. Avoid using false 
sharing which impacts performance scaling. The 
optimization guide mentioned earlier provides a detailed 
explanation of these and other performance optimization 
techniques.  
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