
CMP Implementation in Systems Based on the Intel® Core™ Duo Processor 99

CMP Implementation in Systems Based on the Intel® Core™
Duo Processor

Avi Mendelson, Mobility Group, Intel Corporation
Julius Mandelblat, Mobility Group, Intel Corporation
Simcha Gochman, Mobility Group, Intel Corporation

Anat Shemer, Software Solutions Group, Intel Corporation
Rajshree Chabukswar, Software Solutions Group, Intel Corporation

Erik Niemeyer, Software Solutions Group, Intel Corporation
Arun Kumar, Software Solutions Group, Intel Corporation

Index words: Intel Core Duo, low power, CMP, multi-threading, software optimizations

ABSTRACT

The Intel® Core™ Duo processor is the first mobile
processor to implement Chip Multi-Processing (CMP),
also known as dual core-on-die. This first implementation
was carefully chosen to deliver maximum performance for
a given power. The performance improvement was
achieved by enhancing the single-core micro-architecture,
which results in better single-threaded performance, and
by implementing CMP, which improves the performance
of multi-threaded applications and parallel application
processing. The focus of this paper is to introduce the
reader to the CMP aspects of the Intel Core Duo
processor. Since the Intel Core Duo processor was
designed to be a mobile processor, we examine in detail
the design considerations that had to be taken into account
to achieve a balance between performance improvements
and power savings, and we provide recommendations on
optimizing the code developed for the Intel Core Duo
processor so that future applications can take full
advantage of the new design.

INTRODUCTION
The Intel Core Duo processor is the first mobile core to
implement Core Multi-Processor (CMP) technology on
one die. The implementation was carefully chosen to
maximize performance, so it can be used as a general-
purpose processor, and to minimize power consumption,
in order to extend the battery life and have it fit in a large
variety of thermal envelopes. The performance
improvement was achieved by enhancing the micro-
architecture, based on Pentium® M processor-based
technology, of the single core, and by combining dual
cores on the same die. In order to achieve the power
consumption goal, we examined each micro-architectural

decision with respect to its power/performance benefit. A
general overview of the processor and its unique features
can be found in this special issue of the Intel Technology
Journal [1]. This paper focuses on the multi-core design
and performance aspects of the processor, but for each of
the decisions we describe here, we discuss how the power
and thermal aspects were taken into account as part of our
decision.

0

50

100

150

200

250

300

2 4 6 8 10
Relative Performance

R
el

at
iv

e
P

o
w

er

Frequency Dual-Processor

Figure 1: Theoretical power consumption for the same
performance–single thread vs. dual thread

The first question one might ask is “why choose a CMP
implementation for a mobile processor”? Figure 1
compares the power needed to complete the same amount
of work, at the same execution time, assuming frequency
scaling vs. using dual cores. In order to conduct the
comparison, we assume a single-core processor that
consumes 1 Watt at a given frequency and voltage, as a
baseline. In order to double its performance one can either
double both its frequency and voltage respectively, or he
can double the number of cores (assuming perfect scaling
of the software). As can be seen in the graph, it is clear

Intel Technology Journal, Volume 10, Issue 2, 2006

CMP Implementation in Systems Based on the Intel® Core™ Duo Processor 100

that under these simple conditions a better solution will be
to use parallel execution than to improve the speed of the
processor to achieve the same performance. It is a known
fact that the power (P) a processor consumes depends on
the voltage and the frequency of the processor. In order to
explain the graph of Figure 1, consider a more realistic
relationship between the power the processor consumes
and its voltage and frequency. The basic relationship is
given by Equation 1:

Equation 1: P=∝CV2F

where P stands for power, C for capacitance, V for
voltage, ∝ is the activity factor and F for frequency. For
each frequency within the design space, there is a
minimum V that can support it: we call the pair (Fi, Vi), a
working point of the processor. As long as Vmin < Vi <
Vmax, we can approximate that Fi is linearly dependent
on Vi, and for every (Fj,Vj) such that Vj<Vmin, we set the
Vj to be equal to Vmin. As a result, within the dynamic
range of V, the power has a cube relation with the
frequency, while below Vmin, the power has a linear
dependency with the frequency. Figure 1 uses Equation 1
to estimate the power consumption of each configuration,
but in order to represent more realistic scenario, we use an
exponent of 2.5 rather than an exponent of 3 (cubical
relation). Unfortunately, the exponential relation between
the power and the frequency/voltage is only true as long as
the working point is within the dynamic-scaling portion of
the voltage and provided enough parallelism is available
in the software being used.

Since Intel Core Duo technology is aimed at the general
purpose mobile market, the design should be balanced
between power consumption and performance. Thus, we
used the following criteria to decide between different
design alternatives:

(a) When the system runs single-threaded applications,
its performance should be the same or better than
previous-generation Pentium M processors (with the
same cache size and at the same frequency).

(b) When the system runs multi-threaded applications, we
wanted to maximize the performance of the execution
and preserve power by introducing a new and
efficient power and thermal control system.

On top of all the technical hurdles mentioned above, we
also had to consider the complexity of different solutions,
since our experience told us that complicated solutions
consume much power. Thus, for any new feature, the
performance improvement must be significant enough to
compensate for its complexity.

The primary goal of this paper is to discuss the CMP
implementation and resulting performance. We do not
focus on the power-saving techniques in Intel Core Duo

processors since reference [2] covers that aspect of the
system. However, when we discuss our design alternatives
and why we chose one solution over another, the reader
will notice that power savings (both static and dynamic)
were a major factor in our decisions.

The rest of this paper is organized as follows: in the next
section we focus on the CMP implementation. This
includes the tradeoffs we considered, why we chose the
current implementation, and their power and performance
impact. Next, we focus on performance measurements,
and in last section we extend our discussion to cover
software optimizations.

CMP IMPLEMENTATION AND DESIGN
CONSIDERATIONS
The Intel Core Duo processor is a new member of the
Pentium M processor family. Before discussing how CMP
is implemented, let us describe the implementation of
current processors in the Pentium M family.

Background – The Structure of the Pentium
M Processor
All the Intel processors in the mobility family that
preceded the Intel Core Duo processor were uni-
processor, and therefore efficiently support only Single
Threaded (ST) applications and had the same basic
structure as presented in Figure 2.

Figure 2: Structure of the memory cluster in the Intel
Pentium M processor

Here, all the accesses to the L2 cache, as well as the
accesses to the main memory and IO space, were under
the supervision of a single control unit, shown in Figure 2
as Memory/L2 access control units (also called super-
queue). Using this structure, cacheable requests from the

L2 cache

P
re

fe
tc

h
Memory/ L2

access control

Core + Instruction and
Data First Level Caches

F
ro

nt
 S

id
e

B
us

L2 cache

P
re

fe
tc

h
Memory/ L2

access control

Core + Instruction and
Data First Level Caches

F
ro

nt
 S

id
e

B
us

Intel Technology Journal, Volume 10, Issue 2, 2006

CMP Implementation in Systems Based on the Intel® Core™ Duo Processor 101

core first looked for the data in the L2 cache and only if
not found there (L2 miss), were they forwarded to the
main memory via the front side bus (FSB). Uncacheable
accesses could be directly sent to the main memory. The
Memory/L2 access control unit also served as a central
point for maintaining coherency within the core and with
the external world. Pentium M processors support the
MESI [3] coherence protocol that marks each cache line
as Modifid, Exclusive, Shared, or Invalid.

In a nutshell, the MESI protocol attaches for each cache
line a state that can be M-modified, E-exclusive, S-shared,
or I-invalid. A line that is fetched, receives E, or S state
depending on whether it exists in other processors in the
system. A cache line gets the M state when a processor
writes to it; if the line is not in E or M-state prior to
writing it, the cache sends a Read-For-Ownership (RFO)
request that ensures that the line exists in the L1 cache and
is in the I state in all other processors on the bus (if any).

The Memory/L2 access control unit manipulates the
coherency of each level of the caches independently. It
contains a snoop control unit that receives snoop requests
from the bus and performs the required operations on each
cache (and internal buffers) in parallel. It also handles
RFO requests and ensures the operation continues only
after it guarantees that no other version on the cache line
exists in any other cache in the system.

The CMP Implementation
At the early stages of the project, we considered three
alternatives for CMP implementation, as illustrated with
two structural alternatives in Figure 3. The first option
(Figure 3a) was to put two single-core Pentium M
processors, side by side, split the L2 cache among them,
and communicate between the cores via the FSB or
another fast interconnect.

Both other options called for a shared L2 (Figure 3b) with
a different implementation of the coherence protocol; one
option called for the same basic MESI table as in a single
core but "adjusting it" to the new structures, while the
second option called for a simple version of a directory-
based protocol to improve the performance of the
proposed structure.

The “simple” shared L2 implementation called for us to
take advantage of the fact that the latency of the access to
the L2 cache is significantly longer than the L1 access
latency. This difference in latency enables us to
check/update the status of the cache line in first level
caches in parallel with L2 access. Therefore, this option
increases the active power consumption (with respect to a
single core) for snoop activities, but keeps the static power
(leakage) the same as the single core, since no additional
tables are used.

Figure 3: Implementation alternatives

The directory-based solution calls for extending the MESI
information, as part of the L2 structure, and keeping
information regarding the ownership on L2 cache lines.
Here we assume that snoops are sent to the other core by
the L2 controller, and only when needed. Thus, when a
core accesses the line in the L2 cache, the cache controller
knows if the line is shared with the other cache, and based
on this information the cache control unit can optimize the
number of snoops sent to the other L1. This technique
reduces the active power due to reduced snoop activity,
but increases the design complexity and the static power
due to larger tag arrays.

Using the three criteria described in the introduction, we
analyzed the performance and power and firstly
eliminated the first option (3a). The reason for this was
that it would reduce the performance of ST applications,
since it provides only half of the cache size for each core.
We also observed that the use of a split L2 cache could
cause performance degradation when running multi-
threaded (MT) applications with shared data, preventing
effective data sharing between the threads, and requiring
long latencies when moving data from one core to another.
On top of that, it may reduce the performance of MT and
parallel application processing since it could not
dynamically partition the L2 cache

Deciding between the two implementations of the shared
L2 cache was a tough task. The performance of the two
options was very close and so we had to make our
decision based on power efficiency. We decided to
implement the simple solution and not the directory-based
architecture due to its complexity. The directory-based
solution was found to be less favorable since battery life
mainly depends on static power consumption and less on
dynamic power.

FSB FSB

L2 cache

Core
1

Core
2

L2
Cont.

(a) (b)
P

entium
 - M

 P
entium

 - M

Bus
Cont

Intel Technology Journal, Volume 10, Issue 2, 2006

CMP Implementation in Systems Based on the Intel® Core™ Duo Processor 102

The general structure of the Intel Core Duo CMP
implementation is given in Figure 3b. Comparing it with
Figure 2 shows few structural changes: (1) The core and
first-level caches structure is duplicated; (2) the traditional
memory and L2 control unit (super-queue) is partitioned
into two logical units: the L2 controller that handles all
the requests to the L2 from the core and from the external
bus (snoop requests) and a bus control unit that handles
all the data and IO requests to and from the external bus;
(3) in order to balance the requests to the L2 and memory,
we added a new logical unit (represented by the hexagon)
that aims to guarantee the fairness between the requests
coming from different cores; and (4) we extended the
prefetching unit to handle separately hardware prefetching
by each core.

The new structure of the shared area allows us to enhance
the performance while reducing power consumption. The
new partitioned structure of the super-queue allows us to
implement new power and performance optimizations,
since the L2-control unit was designed to be relatively
small, simple, and fast in order to reduce the latency to the
L2 cache without increasing the power consumption. The
Bus Control Unit was designed to be larger and more
complicated, but since it was found to be more relaxed in
timing, we could design it to have less leakage and even
reduce its active power.

The power and performance results were measured on
Intel Core Duo silicon and justified the CMP architecture
we choose. We discuss this later in the paper.

THE PROTOCOL
From the external observer, the behavior of a CMP system
should be looked at as the behavior of a dual package
(DP) system. For that purpose, Intel Core Duo processor
implements the same MESI protocol as in all other
Pentium M processors.

In order to improve performance, we optimized the
protocol for faster communication between the cores,
particularly when the data exist in the L2 cache. A
noticeable example of such a modification was done in
order to allow the system to distinguish between a
situation in which data are shared by the two CMP cores,
but not with the rest of the world, and a situation in which
the data are shared by one or more caches on the die as
well as by an agent on the external bus (can be another
processor). When a core issues an RFO, if the line is
shared only by the other cache within the CMP die, we
can resolve the RFO internally very fast, without going to
the external bus at all. Only if the line is shared with
another agent on the external bus do we need to issue the
RFO externally.

For most Intel Core Duo systems, when only one package
exists, this is a very important optimization. In the case of
a multi-package system, the number of coherence
messages over the external bus is smaller than in similar
DP or MP systems, since much of the communication is
being resolved internally. The number of required
coherency messages is also much smaller than in the case
of using a split cache (Figure 3a) which requires all the
communication between the cores and split L2 caches to
be done over the external bus.

PERFORMANCE MEASUREMENTS
This section describes the different measurements we did
on an Intel Core Duo processor-based system. We start
with basic measurements and then discuss the impact of
programming models and optimizations on the overall
power and performance of the system.

Basic Measurements
Two of the basic requirements we had from the system
were (1) to keep, or improve the performance of ST
applications, using the same frequency and L2 cache sizes,
and (2) to take full advantage of parallel execution, when
parallelism is available.

Figure 4 compares the performance of Pentium M
processor and Intel Core Duo processors, using the same
platform, running at the same frequency, and executing all
the programs out of the SpecINT benchmark suite. As can
be seen, on average, the performance of the Intel Core
Duo and the Pentium M are the same.

Figure 5 compares the execution of all the programs out of
the SpecFP performance benchmark. Here, some of the
programs show a significant improvement over the
Pentium M execution on the same platform. The main
reason is the use of SSE3 new instructions by the compiler
and a few other performance improvements described in
[2].

0%

20%

40%

60%

80%

100%

120%

140%

16
4.g

zip

17
5.

vp
r

 1
76

.g
cc

 1
81

.m
cf

 18
6.c

ra
fty

 1
97

.p
ar

se
r

25
2.e

on

 25
3.p

er
lb

m
k

 25
4.g

ap

25
5.v

orte
x

 2
56

.b
zip

2

30
0.t

wolf
to

ta
l

R
el

at
iv

e
P

er
fo

rm
an

ce

Figure 4: Single-threaded performance–SpecINT
Core Duo vs. Pentium M (same cache, same platform)

Intel Technology Journal, Volume 10, Issue 2, 2006

CMP Implementation in Systems Based on the Intel® Core™ Duo Processor 103

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 1
68

.w
upwise

 1
71

.s
wim

 1
72

.m
grid

 173
.applu

 1
77

.m
esa

 178
.g

alg
el

 179
.a

rt

183
.equak

e

 1
87

.fa
cer

ec

 1
88

.am
m

p

 1
89

.lu
cas

 1
91

.fm
a3d

 2
00

.s
ixtra

ck

 3
01

.a
psi

Ave
ra

ge

R
el

at
iv

e
P

er
fo

rm
an

ce

Figure 5: Single-threaded performance–SpecFP
Core Duo vs. Pentium M (same cache, same platform)

After achieving the first goal of keeping the performance
of an ST application at the same level (or better) as when
run on a Pentium M processor, Figure 6 shows the
speedup numbers that various MT applications can
achieve.

0

0.5

1

1.5

2

2.5

SYSmark 2004

SPECin t r
ate

SPECfp
 ra

te

W
ebMark 2004

3Dmark
 2005 C

PU

Sandra 2005 C
PU D

ry
sto

ne

Sandra 2005 C
PU W

hers
to

ne

Sandra 2005 M
M In

teger

Sandra 2005 M
M FP

PCMark
 2004 O

vera
l l

PCMark
 2004 C

PU

Avera
ge

Figure 6: MT speedups

The speedup numbers presented here range from 1.2 to 2,
which is the theoretical maximum that can be achieved by
two cores. A closer look at the applications that reveal
relatively low scalability shows that the main reason for
that is lack of parallelism within the application. A few
applications, such as SpecFP rate, suffer from high
utilization of the bus. In these cases doing the same
experiment but with a faster bus yields a better scalability.

Threading Models
When multi-threading an application, the choice of a
threading model plays a key role in achieving maximum
performance scaling. In this section, we discuss the effect
of “data domain decomposition” and “functional domain
decomposition” on the performance of an application.

Data domain decomposition usually results in a balanced
threading model and is likely to produce a better scalable

threading behavior when running the application on
platforms with a higher number of processors. Functional
domain decomposition is susceptible to imbalanced
threads due to thread specific performance characteristics,
and hence load-balancing issues need to be considered. A
functional domain decomposed model is also likely to
limit the scalability by any number of processors. One
very important consideration with imbalanced threading
behavior in applications is the operating system (OS)
scheduling of threads on a CMP system (we illustrate this
with an example in the sections below).

Applications With Balanced Threading
Models
Applications studied here are CPU-intensive, consuming
95-100% of the CPU with the threads performing equal
work and consuming equal processing resources. Here, we
discuss the performance of these applications when they
run in ST and MT modes. The performance data are
measured in seconds.

The graph in Figure 7 indicates performance data for
running ST and MT versions of the applications.
Cryptography and Video Encoding applications have two
MT implementations, and hence, results are indicated as
MT1 and MT2. MT1 is implemented using a data domain
decomposition methodology, and MT2 is implemented
using functional domain decomposition.

Performance Scaling due to Multi-Threading

0

0.5

1

1.5

2

2.5

Cryptography VideoEncoding ContentCreat ion 1 ContentCreation 2

Applications

S
ca

lin
g

MT-1 Scaling

MT-2 Scaling

Figure 7: Balanced threading performance

As indicated in Figure 7, MT applications clearly
demonstrate significant performance improvement over
ST applications. Some of the applications have two
different multi-threaded implementations. For example,
MT-1, MT-2 versions of the Cryptography workload
demonstrate a 2x performance improvement as compared
to the ST version.

Applications with Imbalanced Threading
Model
In this section, we examine the performance implications
on an application with imbalanced threading models. For

Intel Technology Journal, Volume 10, Issue 2, 2006

CMP Implementation in Systems Based on the Intel® Core™ Duo Processor 104

this study, a sample game physics engine was created
(using Microsoft DirectX*). The sample application has
two parts: 1) Physics Computation (collision detection and
resolution for graphics objects), 2) Rendering (updated
positions are drawn onto screen). The application was
deliberately designed such that balanced and imbalanced
threading could be studied for a CMP processor:

a. Balanced: For this implementation, graphical objects
(and background imagery) were divided into two
parts and each thread took care of the collision
detection and resolution of its own set of objects.

b. Imbalanced: In this implementation, one thread was
tasked with performing collision detection and
resolution for the colliding objects while the other
thread calculated the updated positions. The result
was the desired goal of the first thread being more
CPU intensive than the second thread.

With the two implementations, performance data in
different power schemes, MaxPerf and Adaptive, are as
shown below. Adaptive mode here refers to the power-
saving scheme where the OS optimizes overall power
consumption, by dynamically changing CPU frequency on
demand, using Intel SpeedStep® technology (the GV3
technology). The MaxPerf mode refers to the power
scheme where the processor is always running at the
highest clock speed.

Let us discuss the first two data sets in Figure 8 for now.

Performance scaling due to balanced and
imbalanced threading (MTPhysics)

0

0.5

1

1.5

2

MaxPerf Adaptive -
Default

Adaptive -
with GV3 fix

Power schemes

S
ca

li
n

g

Balanced MT Scaling

Imbalanced MT Scaling

Figure 8: Imbalanced threading performance

The Imbalanced MT (Imbalanced-MT) implementation
demonstrates a 2x performance degradation (0.6 scaling)
when running in the Adaptive power scheme as compared
to MaxPerf (indicated with the circle in Figure 8). In the
Imbalanced-MT case, since one of the threads is doing a
large amount of the work as compared to the other thread,
the thread performing more work keeps migrating between
the cores, making effective CPU utilization on the cores at
~50%. On systems running in “Adaptive”
(portable/laptop) power mode, this thread migration
causes the Windows* kernel power manager to incorrectly
calculate the optimal target performance state for the
processor. This reduces the operating frequency of both

cores even when one of the cores is fully utilized in
Adaptive mode and hence causes degradation in
performance for the Imbalanced-MT case. Note that this
issue may occur while running single-threaded workload
as well. To address this issue, Microsoft provided a hot-
fix (KB896256) to change the kernel power manager to
track CPU utilization across the entire package, rather
than the individual cores and hence calculate the optimum
frequency for applications.

The third set in Figure 8 indicates data with the kernel hot-
fix. In this case, the Imbalanced-MT implementation in
Adaptive mode shows expected performance scaling as of
MaxPerf mode. With this fix, both cores run at optimum
frequency, not causing any degradation in Adaptive (PL)
mode.

COMPARING SPLIT CACHE WITH
SHARED CACHE

Recently, different architectures use a split last-level cache
in order to achieve a fast time-to-market of a dual-core
system. Clear downsides of this solution are as follows:

1. Cache coherent-related events that need to be served
over the FSB, such as RFO or invalidation signals,
greatly impact performance and power.

2. An ST application cannot take full advantage of the
entire cache.

The hard partitioned cache may have one significant
benefit over the unified cache; that is, it may prevent one
application from significantly reducing the amount of
cache memory available to an application running on the
other core. Thus, in this section we compare two systems:
one uses a split L2 cache and the other uses a unified
model. In order to make the comparison fair, we present
speedup numbers and not absolute numbers.

A sample physics engine game is created (using Microsoft
DirectX) to perform this study. The application is MT
using data domain decomposition. The threads are
synchronized before rendering the updates on the screen.
Since the dependency among the threads is very minimal,
we expected to achieve ~2.0x performance improvement
with the MT version as compared to the ST version.

The split L2 cache indicated approximately a 1.68x
performance improvement due to MT. Running the same
application on the Intel Core Duo processor-based system
demonstrates ~1.90x scaling as per our expectations.

The root cause of the difference in the scaling is due to the
shared L2 cache on the Intel Core Duo system. The
sample application under study is designed in a way that
both threads work on data from a shared data structure.
Hence, on the system with the split L2 cache, to get access
to the data modified by one processor, the second

Intel Technology Journal, Volume 10, Issue 2, 2006

CMP Implementation in Systems Based on the Intel® Core™ Duo Processor 105

processor needs to go to main memory, which results in
many L2 cache misses. Since the Intel Core Duo system
has a unified L2 cache, a penalty of cache miss and access
to the main memory is avoided, as the data modified by
one core can be made available to the other core
immediately.

OPTIMIZATION OPPORTUNITIES FOR
INTEL® CORE™ DUO PROCESSOR
Like any parallel system, the performance and the power
of the Intel Core Duo processor may be sensitive to the
memory access patterns. In this section we review three
optimizations that are very important for getting the best
out of the system.

Efficient Use of the Shared L2 Cache
Sharing data between two threads on the Intel Core Duo
processor is fastest when done through the L2 cache. This
section examines several scenarios for sharing.

One scenario is when one thread brings the data from
memory, and the other thread later uses this data directly
from the L2 cache. If the single-threaded workload needs
to bring the same data several times from memory but the
multi-threaded version is carefully designed to use the
same data by the two threads simultaneously, the MT
version gains performance by bringing the data less times
from the memory to the cache hierarchy. Such a design
can help applications with a larger than L2 cache data set
and even achieve higher than 2x performance
improvement.

Another scenario is when one thread generates the data
and the other thread consumes it. A couple of variations of
this scenario are possible and are further explained in the
“Producer Consumer Models,” Section 5.3 of the Intel®
CoreTM Duo Processor Optimization Guide[4]. Briefly,
they are the “Delay” approach and “Symmetric” approach.
Below is an example of the expected speedup when the
producer-consumer model is run on an Intel Core Duo
processor vs. a Dual Core Intel® Xeon® processor vs. an
Intel Pentium 4 processor with Hyper-Threading
Technology1 (W = Write, R = Read, xxK = buffer size).

Not only do these data show the benefit of avoiding the
bus/memory latency, they also demonstrate how varying

1 Hyper-Threading Technology requires a computer
system with an Intel® Pentium® 4 processor supporting
HT Technology and a HT Technology enabled chipset,
BIOS and operating system. Performance will vary
depending on the specific hardware and software you use.
See www.intel.com/products/ht/Hyperthreading_more.htm
for additional information.

multi-processor implementations behave in both code
affinity (functional) decomposition and data affinity (data)
decomposition threading models. If the
produced/consumed data set size is bigger than the L1
data cache size, yet smaller than the L2 cache size, data
decomposition and functional decomposition yield similar
performance (assuming the functional decomposition
implementation is well balanced), and the best
performance that can be achieved for data sharing.

Code vs. Data Affinity Performance -- Various Processors
* DP is baseline

0.000

0.500

1.000

1.500

2.000

2.500

3.000

WR 2K buffer constant
code aff inity

W_WR 2K buffer constant
code af finity

WR 2K buffer constant
data affinity

W_WR 2K buffer constant
data aff inity

S
ca

li
n

g

CMP HT DP

Figure 9: Code vs. data affinity performance on
various processors

False Sharing Can Reduce Performance
False sharing happens when two or more threads access
different address ranges on the same cache line
simultaneously. This causes the cache line to be in the first
level cache of the two cores.

False sharing causes a severe performance penalty if one
or more of the threads writes to the shared cache line. This
causes invalidation of the cache line at the first-level
cache of the other core. As a result, the next time that the
other core accesses the cache line in question it will have
to transfer it from the core that wrote it earlier through the
bus, thereby incurring a major latency penalty.

Below is an example of code that has false sharing when
executed by several threads simultaneously.

int counter[THREAD_NUM];

int inc_counter ()

{

 counter[my_tid]++;

 return counter[my_tid];

}
Table 1 lists the penalties that an application can suffer if
it uses false sharing intensively on an Intel Core Duo
system. In order to avoid such an unnecessary overhead,
the programmer needs to avoid false sharing, and in
particular, needs to make sure it does not occur
unintentionally in the following cases:

http://www.intel.com/products/ht/Hyperthreading_more.htm

Intel Technology Journal, Volume 10, Issue 2, 2006

CMP Implementation in Systems Based on the Intel® Core™ Duo Processor 106

• Global data variables and static data variables that are
placed in the same cache line but are written by
different threads.

• Objects allocated dynamically by different threads
can accidentally share cache lines.

Table 1: False sharing penalties

Case Data
location

Latency (cycles/nsec)

L1 to L1
Cache

L1
Cache

14 core cycles + 5.5 bus
cycles

Through L2
Cache

L2
Cache

14 core cycles

Through
Memory

Main
memory

14 core cycles + 5.5 bus
cycles + ~40-80 nsec
depending on FSB and
DDR freq.

Optimize Bus Access Between the Cores to
Maximize the Bus Bandwidth
Be careful when parallelizing code sections that use data
sets exceeding the second-level cache and/or bus
bandwidth. If only one of the threads is using the second-
level cache and/or bus, then it is expected to get the
maximum possible speedup when the other thread running
on the other core does not interrupt its progress. However,
if the two threads use the second-level cache there may be
performance degradation if one of the following
conditions is true:

• Their combined data set is greater than the second-
level cache size.

• Their combined bus usage is greater than bus
capacity.

• They both have extensive access to the same set in the
second-level cache, and at least one of the threads
writes to this cache line.

To avoid these, we recommend that you investigate
parallelism schemes in which only one of the threads
accesses the second-level cache at a time, or that the level
of using the second-level cache and the bus does not
exceed their limits. This concept is explained further in
Section 5.3.5 of the Intel® CoreTM Duo Processor
Optimization Guide.

CONCLUSION AND REMARKS
The full performance potential of the Intel® Centrino®
Duo mobile technology architecture can be realized by
efficiently multi-threading applications, using the methods
detailed in this paper. The use of balanced threading

techniques is likely to provide optimal performance
improvements on CMP. Multi-tasking scenarios, one of
the common usage scenarios, provide a richer user
experience on the Intel Centrino Duo mobile technology
system. The shared cache structure is likely to showcase
better performance scaling for MT applications when the
threads work on shared data sets. Avoid using false
sharing which impacts performance scaling. The
optimization guide mentioned earlier provides a detailed
explanation of these and other performance optimization
techniques.

REFERENCES
[1] Gochman et Al., “Introduction to Intel® CoreTM Duo
Processor Architecture,” in Intel Technology Journal,
Volume 10, Issue 2, 2006.

[2] Naveh et al., “Power and Thermal Control in the
Intel® CoreTM Duo Processor,” in Intel Technology
Journal, Volume 10, Issue 2, 2006.

 [3] IA-32 Intel® Architecture Software Developer’s
Manual Volume 3A: System Programming Guide, Part 1,
in
ftp://download.intel.com/design/Pentium4/manuals/25366
819.pdf

[4] IA-32 Intel® Architecture Optimization Reference
Manual, in
http://www.intel.com/design/Pentium4/manuals/248966.htm

AUTHORS’ BIOGRAPHIES
Avi Mendelson is a principal engineer in Intel’s Mobile
Platform Group in Haifa, Israel, and adjunct professor in
the CS and EE departments, Technion, Israel Institute of
Technology. He received his B.Sc. and M.S.c degrees
from the Technion, Israel Institute of Technology and his
Ph.D from the University of Massachusetts Amherst. Avi
has been with Intel for 7 years. He started as senior
researcher in Intel Labs, later he moved to the
Microprocessor group where he serves as the CMP
architect of Intel Core Duo processor. Avi’s work and
research interests are in computer architecture, low-power
design, parallel systems, OS related issues and
virtualization. His e-mail address is avi.mendelson at
intel.com.

Julius Mandelblat is a principal engineer in Intel’s
Mobile Platform Group in Haifa, Israel. He received his
B.Sc. and M.Sc. degrees from Transport Engineers
Institute in Moscow (USSR). Julius joined Intel 16 years
ago. He worked on many of the processors that have been
developed by Israel Design Center during this period.
Julius worked as micro-architect and senior design leader
for the CMP implementation of the Core Duo processor.
His e-mail address is julius.mandelblat at intel.com.

ftp://download.intel.com/design/Pentium4/manuals/25366819.pdf
http://www.intel.com/design/Pentium4/manuals/248966.htm

Intel Technology Journal, Volume 10, Issue 2, 2006

CMP Implementation in Systems Based on the Intel® Core™ Duo Processor 107

Simcha Gochman is a senior principal engineer with
Intel’s Mobile Platform Group in Haifa, Israel. Simcha
has been with Intel for 21 years. Lately he was leading the
microarchitecture development of the Pentium M
processors Banias and Dothan and of the Core Duo
processor code name Yonah. Earlier in Intel he led the
microarchitecture definition of the Pentium Processor with
MMX™ technology and was involved with the design of
the 80860 processor and the 80387 numeric coprocessor.
Simcha received his M.Sc. degree from the Technion,
Israel Institute of Technology in 1984. His e-mail address
is simcha.gochmana at intel.com.

Anat Shemer is a senior software engineer working on
mobile software enabling in the Software Solutions
Group. Anat has been with Intel for 16 years. She worked
on performance analysis of multi-threaded workloads
supporting the evaluation of Intel Core Duo micro-
architecture performance. Earlier at Intel she worked on
binary tools and performance simulation tools that
supported Intel future micro-architectures development.
Anat received here M.Sc. degree from the Technion,
Israel Institute of Technology in 1989. Her e-mail address
is anat.shemer at intel.com.

Rajshree Chabukswar is a software engineer working on
client enabling in the Software Solutions Group that
enables client platforms through software optimizations
focusing on multi-threading and mobile enabling. Prior to
working at Intel, she obtained a Masters degree in
Computer Engineering from Syracuse University, NY.
Her e-mail address is rajshree.a.chabukswar at intel.com.

Erik Niemeyer is a senior software engineer working for
Intel’s Software and Solutions Group. His current
assignment is in New Mexico with the Mobile Enabling
Client Team working on IBM-Lotus Notes* to help
improve performance and reduce power consumption of
the upcoming R8 release. Erik has been with Intel for 6
years. Before Intel, Erik was a systems
integrator/programmer with the Federal Government for
12 years and worked on enterprise-level application
performance tuning. Prior to that Erik earned his B. Sc.
from the University of New Mexico. His e-mail address is
erik.a.niemeyer at intel.com.

Arun Kumar is an engineering manager in Intel’s
Software and Solutions Group in Dupont, Washington. He
received his B.Tech degree from the Indian Institute of
Technology, Kanpur, and his Masters and PhD degrees
from the University of Minnesota, Minneapolis, where his
research was in the area of image processing and
computer vision. Currently, his team works on client
platforms based on Pentium-M, Pentium-D and Core Duo
processor architectures with special focus on CMP,
application software performance and platform power

consumption. His e-mail address is arun.kumar at
intel.com.

Copyright © Intel Corporation 2006. All rights reserved.
Intel, Core, Pentium, Intel SpeedStep, Xeon, Centrino,
and MMX are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States
and other countries.

* Other names and brands may be claimed as the property
of others.

 This publication was downloaded from
http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

