Disclaimer: Este apunte no es autocontenido y fue pensado como un repaso de los conceptos, no para aprenderlos de aquí directamente.

1. Límites y continuidad

Definición 1 (Gráfica) La gráfica de una función $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ es $Gr(f) \subseteq \mathbb{R}^{n+1} = \{(x_1, ..., x_n, f(x_1, ..., x_n))\}$.

Definición 2 (Conjunto de nivel) El conjunto de nivel de valor c de una función $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ es $\{\mathbf{x} \in U | f(\mathbf{x}) = c\}$. Si n = 2 lo llamamos también curva de nivel.

Definición 3 (Abierto) Un conjunto $U \subseteq \mathbb{R}^n$ es abierto $sii \ \forall \mathbf{x} \in U \ \exists r > 0 \ D_r(x) \subseteq U$.

Teorema 1 (Un disco es abierto) Para cada $\mathbf{x} \in \mathbb{R}^n$ y r > 0, $D_r(\mathbf{x})$ es un conjunto abierto.

Definición 4 (Frontera) Los puntos frontera x de un conjunto $A \subseteq \mathbb{R}^n$ son los que para toda vecindad de x contiene al menos un punto de A y un punto de $\mathbb{R}^n \setminus A$.

Definición 5 (Límite) Sea $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$, donde A es un abierto. Sea $\mathbf{x_0}$ un punto de A o frontera de A. Decimos que el límite de f cuando \mathbf{x} tiende a $\mathbf{x_0}$ es \mathbf{b} sii para cualquier vecindad V de \mathbf{b} existe una vecindad U de $\mathbf{x_0}$ tal que $\mathbf{x} \in (U \setminus \{\mathbf{x_0}\})$ implica $f(\mathbf{x}) \in V$. Alternativamente, para todo ε existe un δ tal que $\|\mathbf{x} - \mathbf{x_0}\| < \delta$ implica $\|f(\mathbf{x}) - \mathbf{b}\| < \varepsilon$. Escribimos:

$$\lim_{\mathbf{x}\to\mathbf{x_0}} f(\mathbf{x}) = \mathbf{b}.$$

Teorema 2 (Unicidad de limite) $Si \lim_{\mathbf{x} \to \mathbf{x_0}} f(\mathbf{x}) = \mathbf{b_1} \ y \lim_{\mathbf{x} \to \mathbf{x_0}} f(\mathbf{x}) = \mathbf{b_2} \ entonces \ \mathbf{b_1} = \mathbf{b_2}.$

Teorema 3 (Propiedades de límite) Sea $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$, $g: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$, $\mathbf{x_0}$ un punto de A o de su frontera, $\mathbf{b}, \mathbf{b_1}, \mathbf{b_2} \in \mathbb{R}^m$ y $c \in \mathbb{R}$. Se cumple que:

- I $Si \lim_{\mathbf{x} \to \mathbf{x_0}} f(\mathbf{x}) = \mathbf{b} \ entonces \lim_{\mathbf{x} \to \mathbf{x_0}} cf(\mathbf{x}) = c\mathbf{b}.$
- II $Si \lim_{\mathbf{x} \to \mathbf{x_0}} f(\mathbf{x}) = \mathbf{b_1} \ y \lim_{\mathbf{x} \to \mathbf{x_0}} g(\mathbf{x}) = \mathbf{b_2} \ entonces \lim_{\mathbf{x} \to \mathbf{x_0}} f(\mathbf{x}) + g(\mathbf{x}) = \mathbf{b_1} + \mathbf{b_2}.$
- III $Si\ m=1$, $\lim_{\mathbf{x}\to\mathbf{x_0}} f(\mathbf{x}) = b_1\ y \lim_{\mathbf{x}\to\mathbf{x_0}} g(\mathbf{x}) = b_2\ entonces \lim_{\mathbf{x}\to\mathbf{x_0}} f(\mathbf{x})g(\mathbf{x}) = b_1b_2$.
- IV $Si \ m = 1$, $\lim_{\mathbf{x} \to \mathbf{x_0}} f(\mathbf{x}) = b \ y \ f(\mathbf{x}) \neq 0$ para todo $\mathbf{x} \in A$ entonces $\lim_{\mathbf{x} \to \mathbf{x_0}} 1/f(\mathbf{x}) = 1/b$
- $V Si f(\mathbf{x}) = (f_1(\mathbf{x}), ..., f_m(\mathbf{x})) entonces \lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = (b_1, ..., b_n) sii \forall i \lim_{\mathbf{x} \to \mathbf{x}_0} f_i(\mathbf{x}) = b_i.$

Definición 6 (Continuidad) Sea $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$. Sea $\mathbf{x_0} \in A$. f es continua en $\mathbf{x_0}$ sii $\lim_{\mathbf{x} \to \mathbf{x_0}} f(\mathbf{x}) = f(\mathbf{x_0})$. f es continua si es continua en todo punto de su dominio.

Teorema 4 (Propiedades de funciones continuas) Sean $f, g : A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ continuas en $\mathbf{x_0}$ y $c \in \mathbb{R}$. Se cumple que:

- I cf es continua en $\mathbf{x_0}$.
- II f + g es continua en $\mathbf{x_0}$.
- III $Si \ m = 1 \ fg \ es \ continua \ en \ \mathbf{x_0}$.
- IV Si m=1 y f no se anula en A entonces 1/f es continua en $\mathbf{x_0}$. Se puede pedir equivalentemente $f(\mathbf{x_0}) \neq 0$ ya que f es continua y esto implica que sería distinta de 0 en una vecindad de $\mathbf{x_0}$.
- $V f(\mathbf{x}) = (f_1(\mathbf{x}), ..., f_m(\mathbf{x}))$ sii $\forall i f_i(\mathbf{x})$ es continua en $\mathbf{x_0}$.

Teorema 5 (Composición de continuas es continua) Sean $f: B \subseteq \mathbb{R}^n \to \mathbb{R}^m$ y $g: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ tal que $g(A) \subseteq B$, g es continua en $\mathbf{x_0}$ y f es continua en $g(\mathbf{x_0})$. $f \circ g$ es continua en $\mathbf{x_0}$.

Definición 7 (Continuidad uniforme) Sea $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$. f es uniformemente continua sii para todo $\varepsilon > 0$ existe un $\delta > 0$ tal que para toda pareja de puntos de A $\mathbf{x_0}$ y $\mathbf{y_0}$ tal que $\|\mathbf{x_0} - \mathbf{y_0}\| < \delta$ se cumple que $\|f(\mathbf{x_0}) - f(\mathbf{y_0})\| < \varepsilon$.

Teorema 6 (Una sucesión en un compacto tiene una subsucesión convergente) Sea A un compacto $y(a_n)_{n\in\mathbb{N}}$ una sucesión de elementos de A. a_n tiene una subsucesión convergente.

2. Diferenciación

Definición 8 (Derivada parcial) Sea $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ donde U es un abierto. La derivada parcial respecto de la i-ésima variable está dada por

$$\frac{\partial f}{\partial x_i}(x_1, ..., x_n) = \lim_{h \to 0} \frac{f(x_1, ..., x_i + h, ..., x_n) - f(x_1, ..., x_n)}{h}$$

si el límite existe (sino, la derivada parcial no existe).

Definición 9 (Diferencial) Sea $f:U\subseteq\mathbb{R}^n\to\mathbb{R}^m$. La matriz diferencial de $f=(f_1,...,f_n)$ **D**f está dada por:

$$\begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Definición 10 (Gradiente) Sea $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$, el gradiente de $f \bigtriangledown f$ es la matriz diferencial de $\mathbf{D}f$. O sea, la matriz diferencial tiene por filas los gradientes de las componentes $f_1, ..., f_n$ de f.

Definición 11 (Diferenciabilidad) Sea $f:U\subseteq\mathbb{R}^n\to\mathbb{R}^m$ con U abierto. f es diferenciable en $\mathbf{x_0}\in U$ si:

$$\lim_{\mathbf{x} \to \mathbf{x_0}} \frac{\|f(\mathbf{x}) - f(\mathbf{x_0}) - \mathbf{D}f(\mathbf{x_0})(\mathbf{x} - \mathbf{x_0})\|}{\|\mathbf{x} - \mathbf{x_0}\|} = 0.$$

Teorema 7 (Diferenciable implica continua) $Si \ f : U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ es diferenciable en $\mathbf{x_0} \in U$ entonces es continua en $\mathbf{x_0}$.

Teorema 8 (C^1 implica diferenciable) Si existen y son continuas todas las derivadas parciales de f en \mathbf{x} entonces f es diferenciable en \mathbf{x} .

Teorema 9 (Propiedades de la diferencial) Sean $f,g:U\subseteq\mathbb{R}^n\to\mathbb{R}^m$ diferenciables en $\mathbf{x_0}$ y $c\in\mathbb{R}$. Se cumple que:

I cf es diferenciable en $\mathbf{x_0}$ y $\mathbf{D}cf(\mathbf{x_0}) = c\mathbf{D}f(\mathbf{x_0})$.

II f + g es diferenciable en $\mathbf{x_0}$ y $\mathbf{D}(f + g)(\mathbf{x_0}) = \mathbf{D}f(\mathbf{x_0}) + \mathbf{D}g(\mathbf{x_0})$.

III Si m = 1 entonces fg es diferenciable en $\mathbf{x_0}$ y $\mathbf{D}(fg)(\mathbf{x_0}) = g(\mathbf{x_0})\mathbf{D}f(\mathbf{x_0}) + f(\mathbf{x_0})\mathbf{D}g(\mathbf{x_0})$.

IV $Si \ m = 1 \ y \ g$ no se anula en U entonces f/g es diferenciable y

$$\mathbf{D}(f/g)(\mathbf{x_0}) = \frac{g(\mathbf{x_0})\mathbf{D}f(\mathbf{x_0}) - f(\mathbf{x_0})\mathbf{D}g(\mathbf{x_0})}{g(\mathbf{x_0})^2}.$$

Teorema 10 (Regla de la cadena) Sean $g: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ $y \ f: V \subseteq \mathbb{R}^m \to \mathbb{R}^p$ tal que $g(U) \subseteq V$ $y \ U \ y \ V$ son abiertos. Si g es diferenciable en $\mathbf{x_0}$ y f es diferenciable en $g(\mathbf{x_0})$ entonces $f \circ g$ es diferenciable en $\mathbf{x_0}$ y

$$\mathbf{D}(f \circ g)(\mathbf{x_0}) = \mathbf{D}f(g(\mathbf{x_0}))\mathbf{D}g(\mathbf{x_0}).$$

Definición 12 (Plano tangente) Sea $f: \mathbb{R}^2 \to \mathbb{R}$ el plano tangente a la gráfica de f en (x_0, y_0) está dado por

$$z = f(x_0, y_0) + \nabla f(x_0, y_0)(x - x_0, y - y_0).$$

Definición 13 (Derivada direccional) La derivada direccional de $f : \mathbb{R}^3 \to \mathbb{R}$ en \mathbf{x} en dirección \mathbf{v} $f_{\mathbf{v}}(\mathbf{x})$ está dada por $\frac{\partial f(\mathbf{x}+t\mathbf{v})}{\partial t}$.

Teorema 11 (La derivada direccional es el producto de la dirección con el gradiente) Si f es diferenciable en \mathbf{x} y \mathbf{v} es un vector de norma 1, $\nabla f(\mathbf{x})\mathbf{v} = f_{\mathbf{v}}(\mathbf{x})$.

Teorema 12 (El gradiente apunta en la dirección de máximo crecimiento) $Si\ f: \mathbb{R}^n \to \mathbb{R}\ y$ $\nabla f(\mathbf{x}) \neq 0$ entonces ∇f apunta en la dirección de máximo crecimiento de f desde \mathbf{x} .

Teorema 13 (El gradiente es normal a la superficie de nivel) Sea $f: \mathbb{R}^3 \to \mathbb{R}$ con todas sus derivadas parciales existentes y continuas. Si S es una superficie de nivel que contiene el punto (x_0, y_0, z_0) entonces $\nabla f(x_0, y_0, z_0)$ es normal a S.

Definición 14 (Recta tangente a una superficie) Sean $x, y, z : \mathbb{R} \to \mathbb{R}$ diferenciables en t_0 . La recta tangente en t_0 a la superficie de puntos (x(t), y(t), z(t)) está dada por la ecuación $(x(t_0), y(t_0), z(t_0)) + \lambda(x'(t_0), y'(t_0), z'(t_0))$.

Teorema 14 (Derivadas parciales iteradas) Sea $f: \mathbb{R}^2 \to \mathbb{R}$ de clase C^2 . Se cumple que

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}.$$

Definición 15 (Extremo local) Si $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ $\mathbf{x_0} \in U$ es un mínimo local sii existe una vecindad V de $\mathbf{x_0}$ tal que $\mathbf{x} \in V$ implica $f(\mathbf{x_0}) \geq f(\mathbf{x})$. $\mathbf{x_0}$ es un máximo local sii es mínimo local de -f. Un punto es extremo local o relativo si es mínimo o máximo local. $\mathbf{x_0}$ es punto crítico sii f no es diferenciable en $\mathbf{x_0}$ o si $\mathbf{D}f(\mathbf{x_0}) = \mathbf{0}$. Un punto crítico que no es extremo local se llama punto silla.

Teorema 15 (Los extremos locales son puntos críticos) $Si \mathbf{x_0}$ es extremo local de f diferenciable en un abierto alrededor de $\mathbf{x_0}$, entonces $\mathbf{x_0}$ es punto crítico de f ($\mathbf{D}f(\mathbf{x_0}) = \mathbf{0}$).

Definición 16 (Hessiano) El hessiano de f en $\mathbf{x_0}$ $\mathbf{H} f(\mathbf{x_0})$ está dado por la matriz de las derivadas parciales segundas dividido 2. Esto es

$$(\mathbf{H}f(\mathbf{x_0}))_{i,j} = \frac{1}{2} \frac{\partial^2 f}{\partial x_i \partial x_j}.$$

El hessiano se utiliza como función de $\mathbb{R}^n \to \mathbb{R}$ haciendo $\mathbf{H} f(\mathbf{x_0})(\mathbf{x}) = \mathbf{x}^t M \mathbf{x}$ donde M es la matriz anteriormente descripta y \mathbf{x} es visto como vector columna (con lo cual \mathbf{x}^t es fila).

Teorema 16 (Polinomio de Taylor) Sea $f: \mathbb{R}^2 \to \mathbb{R}$. Los términos de Taylor centrado en (x_0, y_0) son:

- 0. $f(x_0, y_0)$
- 1. $\nabla f(x_0, y_0)(x x_0, y y_0)$
- 2. $(x-x_0, y-y_0)^t \mathbf{H} f(x_0, y_0)(x-x_0, y-y_0)/2$

3.
$$\frac{\partial^3 f}{\partial^3 x}(x_0, y_0)(x - x_0)^3/6 + \frac{\partial^3 f}{\partial^3 y}(x_0, y_0)(y - y_0)^3/6 + \frac{\partial^3 f}{\partial^2 x \partial y}(x_0, y_0)(x - x_0)^2(y - y_0)/2 + \frac{\partial^3 f}{\partial^2 y \partial x}(x_0, y_0)(x - x_0)(y - y_0)^2/2$$

El polinomio de Taylor de órden k está dado por los términos 0..k y el resto está dado por el término k+1 pero evaluado sobre algún punto del segmento $(x,y)-(x_0,y_0)$.

Teorema 17 (El Hessiano determina el tipo de extremo) $Si \ f : U \subseteq \mathbb{R}^n \to \mathbb{R}$ es de clase C^3 , $\mathbf{x_0} \in U$ es un punto crítico de f y el $\mathbf{H}f(\mathbf{x_0})$ es definido positivo entonces $\mathbf{x_0}$ es un mínimo relativo. Si es definido negativo, $\mathbf{x_0}$ es un máximo relativo.

Teorema 18 (Una función sobre un compacto alcanza máximo y mínimo) $Si \ f : D \to \mathbb{R}$ es continua en $D \subset \mathbb{R}^n$ cerrado y acotado. f alcanza su máximo y mínimo en puntos $\mathbf{x_0}$ y $\mathbf{x_1}$ de D.

Teorema 19 (Función implícita) Sea $f: \mathbb{R}^{n+1} \to \mathbb{R}$ de clase C^1 . Sean $\mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^n$ $y x_{n+1} \in \mathbb{R}$ tal que $\frac{\partial f}{\partial x_{n+1}}(\mathbf{x}, x_{n+1}) \neq 0$. Dada una vecindad V de \mathbf{x} existe una función $g: V \subseteq \mathbb{R}^n \to \mathbb{R}$ tal que $f(\mathbf{x}, g(\mathbf{x})) = 0$ y

$$\frac{\partial g}{\partial x_i}(\mathbf{x}) = -\frac{\frac{\partial f}{\partial x_i}(\mathbf{x}, g(\mathbf{x}))}{\frac{\partial f}{\partial x_{n+1}}(\mathbf{x}, g(\mathbf{x}))}$$

.

Demo: La existencia de dicha función escapa al alcance de este apunte. La derivada parcial sale de derivar $f(\mathbf{x}, g(\mathbf{x})) = 0$ respecto de x_i por regla de la cadena:

$$f(\mathbf{x}, g(\mathbf{x})) = 0$$

$$\frac{\partial f(\mathbf{x}, g(\mathbf{x}))}{\partial x_i} = 0$$

$$\frac{\partial f}{\partial x_i}(\mathbf{x}, g(\mathbf{x})) + \frac{\partial f}{\partial x_{n+1}}(\mathbf{x}, g(\mathbf{x})) \frac{\partial g}{\partial x_i}(\mathbf{x}) = 0$$

$$-\frac{\frac{\partial f}{\partial x_i}(\mathbf{x}, g(\mathbf{x}))}{\frac{\partial f}{\partial x_{n+1}}(\mathbf{x}, g(\mathbf{x}))} = \frac{\partial g}{\partial x_i}(\mathbf{x})$$

Teorema 20 (Función inversa) Sea $f : \mathbb{R}^n \to \mathbb{R}^n$ de clase C^1 . Sea $\mathbf{x} \in \mathbb{R}^n$ tal que $\det(\mathbf{D}f(\mathbf{x})) \neq 0$. Existe una inversa local f^{-1} en una vecindad de \mathbf{x} y $\mathbf{D}f^{-1} = (\mathbf{D}f)^{-1}$.

Teorema 21 (Multiplicadores de Lagrange) Sean $f, g : U \subseteq \mathbb{R}^n \to \mathbb{R}$ funciones C^1 . Sea $S = \{\mathbf{x} | g(\mathbf{x}) = c\}$ el conjunto de nivel c de g. Si $\mathbf{x_0}$ es extremo local de f $y \bigtriangledown g(\mathbf{x_0})$ restringida a S entonces existe un λ tal que $\bigtriangledown f(\mathbf{x_0}) = \lambda \bigtriangledown g(\mathbf{x_0})$.

3. Integración

Definición 17 (Integral) Sea $f:[a,b]->\mathbb{R}$. Consideremos la suma $\sum_{a\in A} M_a|a|$ donde A es una partición en intervalos de [a,b] M_a es el supremo de la imagen de f sobre el intervalo a. La integral superior se define como el ínfimo de las sumas sobre todas las particiones posibles. La integral inferior se define análogamente pero usando m_a en lugar de M_a (es decir, el ínfimo de la imagen de f sobre el intervalo a) g tomando el supremo del conjunto. Si ambas coinciden, decimos que f es integrable.

Teorema 22 (Continuas integrables) Si una función es continua, entonces es integrable.

Teorema 23 (Teorema fundamental del cálculo) $Si\ f\ es\ continua\ en\ [a,b],\ x\in(a,b)\ entonces$

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x).$$

Teorema 24 (Cambio de variables) Sea $T:D\subseteq\mathbb{R}^n\to D'$ diferenciable y biyectiva salvo un conjunto de puntos de medida 0. Sea $f:T(D)\to\mathbb{R}$. Se cumple que

$$\int_{T(D)} f(\mathbf{y}) d\mathbf{y} = \int_{D} f \circ T(\mathbf{x}) |\mathbf{D}T| d\mathbf{x}.$$

4. Demostraciones

4.1. Límite y continuidad

1. Sea $A \subseteq \mathbb{R}$ acotado superiormente y sea $s = \sup(A)$. Probar que existe una sucesión $(a_n)_{n \in \mathbb{N}} \subset A$ tal que $\lim_{n \to \infty} a_n = s$.

Demo: Sea la familia de conjuntos C_n tal que $C_n = \{a \in A | a > s - 1/n\}$. Veamos que C_n es no vacíio para todo n. Si lo fuera, eso quiere decir que $A = A \setminus C_n = \{a \in A | a < s - 1/n\}$ y como s - 1/n < s, s no podría ser el supremo de A. Ahora sea $(a_n)_{n \in \mathbb{N}}$ tal que $a_n \in C_n$. Es claro que $s - 1/n < a_n \le s$. Eso quiere decir que la sucesión a_n está contenida entre la sucesión $(s - 1/n)_{n \in \mathbb{N}}$ y $(s)_{n \in \mathbb{N}}$, y ambas convergen a s, por lo tanto a_n converge a s.

2. Probar que toda sucesión de números reales monótona y acotada es convergente.

Demo: Sea $(a_n)_{n\in\mathbb{N}}$ la sucesión. Supongamos sin pérdida de generalidad que es monótona creciente y sea $s = \sup(A)$ donde $A = \{a | \exists n \ a = a_n\}$. Veamos que a_n converge a s, es decir, para

todo $\varepsilon > 0$ existe un n_0 tal que $n \ge n_0 \Rightarrow |s - a_n| < \varepsilon$. Por definición de supremo, para todo $\varepsilon > 0$ existe un $a \in A$ tal que $s - a < \varepsilon$. Sea n_0 tal que $a_{n_0} = a$ (existe por la definición de A). Como a_n es monótona para todo $n \ge n_0, \, a_n \ge a_{n_0}$, entonces $s - a_n < s - a_{n_0} \le \varepsilon$.

3. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ continua en $P \in \mathbb{R}^2$. Si $(P_k)_{k \in \mathbb{N}}$ es una sucesión en \mathbb{R}^2 tal que $\lim_{k \to \infty} P_k = P$, probar que $\lim_{k\to\infty} f(P_k) = f(P)$.

Demo: Queremos ver que para todo $\varepsilon > 0$ existe un k_0 tal que $k \ge k_0 \Rightarrow |f(P_k) - f(P)| < \varepsilon$. Sea $\delta > 0$ tal que para todo $Q \|P - Q\| < \delta \Rightarrow |f(P) - f(Q)| < \varepsilon$ (existe porque f es continua). Sea entonces k_0 tal que $k \geq k_0 \Rightarrow |P - P_k| < \delta$, que existe porque P_k converge a P. De ambas definiciones se deduce directamente que $k \geq k_0 \Rightarrow |f(P_k) - f(P)| < \varepsilon$, que es lo que queríamos demostrar.

4. Sea $K \subset \mathbb{R}^2$ compacto y sea $f: K \to \mathbb{R}$ continua. Probar que f es acotada y alcanza su mínimo y su máximo valor.

Demo: Supongamos que f no es acotada superiormente. Eso quiere decir que existen valores en la imagen de f superiores a cualquier número real. Sea entonces la sucesión $(a_n)_{n\in\mathbb{N}}$ tal que $f(a_n) >$ n. Como a_n es una sucesión de elementos de un compacto K, entonces tiene una subsucesión convergente, llamémosla $(b_n)_{n\in\mathbb{N}}$. Como $b_i=a_j$ para algún $j\geq i$ se ve que $f(b_i)>j\geq i$. Sea b el límite de b_n que por ser K compacto pertenece a K. Como f es continua, la sucesión $f(b_n)$ converge a f(b). Pero $f(b_n) > n$, asi que si tomamos $n_0 = [f(b)] + 2$, $n \ge n_0 \Rightarrow f(b_n) > n \ge n_0 > f(b) + 2$ y por lo tanto $|f(b)-f(b_n)|$ es siempre mayor a 1 a partir de n_0 , lo cual contradice el que $f(b_n)$ converja a f(b). Esto es un absurdo que proviene de suponer que f no es acotada superiormente. Análogamente se ve que f es acotada inferiormente. Sea s el supremo de la imagen de f y sea $(a_n)_{n\in\mathbb{N}}\in K$ tal que $f(a_n)$ converge a s. Dado que a_n tiene una subsucesión convergente, y que esta converge a un a tal que f(a) = s, se ve que f alcanza el máximo. Análogamente, f alcanza el mínimo.

5. Sea $f:[a,b]\to\mathbb{R}$ continua. Probar que f es uniformemente continua.

Demo: Supongamos que f no es uniformemente continua. Entonces existe un $\varepsilon > 0$ tal que para todo $\delta > 0$ existen $x \in y$ tal que $|x-y| < \delta y$ $|f(x)-f(y)| > \varepsilon$. Sea entonces la sucesión $(a_n, b_n)_{n \in \mathbb{N}}$ tal que $a_n - b_n < 1/n$ y $|f(a_n) - f(b_n)| > \varepsilon$ (sin pérdida de generalidad asumimos siempre $a_n > b_n$ ya que podemos elegir la pareja contraejemplo para $\delta=1/n$ en cualquier orden). Dado que (a_n,b_n) es una sucesión en el compacto $[a,b]^2$, tiene una subsucesión convergente. Sea $(c_n,d_n)_{n\in\mathbb{N}}$ dicha subsucesión. Dado que $(c_n, d_n) = (a_m, b_m)$ para un $m \ge n$ es claro que $c_n - d_n < 1/m \le 1/n$. Sea (c,d) el límite de la sucesión (c_n,d_n) . Como la sucesión d_n esta acotada superiormente por c_n que tiende a c e inferiormente por $\min(a, c_n - 1/n)$ que también tiende a c, entonces d_n tiende a c y por lo tanto c=d. Como f es continua, $f(c_n)$ y $f(d_n)$ ambas deberían tender a f(c) y por lo tanto la sucesión $e_n = f(c_n) - f(d_n)$ debería tender a 0, pero la sucesión $e_n = f(c_n) - f(d_n)$ está acotada inferiormente por ε por lo tanto tiende a ε o algo mayor. Este absurdo proviene de suponer que f no es uniformemente continua, por lo tanto lo es.

4.2. Diferenciabilidad

1. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable en $P \in \mathbb{R}^2$. Probar que f es continua en P.

Demo: Sea $P = (x_0, y_0)$. Por definición de diferenciable existen las derivadas parciales en P $\frac{\partial f}{\partial x}(x_0, y_0) = a \text{ y } \frac{\partial f}{\partial x}(x_0, y_0) = b \text{ y se cumple que}$

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y) - f(x_0,y_0) - a(x-x_0) - b(y-y_0)}{\|(x-x_0,y-y_0)\|} = 0$$
 (1)

Es claro que

$$\lim_{(x,y)\to(x_0,y_0)} a(x-x_0) = 0 \tag{2}$$

$$\lim_{(x,y)\to(x_0,y_0)} b(y-y_0) = 0 \tag{3}$$

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\to(x_0,y_0)}} a(x-x_0) = 0$$

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\to(x_0,y_0)}} b(y-y_0) = 0$$

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\to(x_0,y_0)}} \|(x-x_0,y-y_0)\| = 0$$
(2)

Por ser todos límites convergentes podemos operar con ellos y hacer:

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y) - f(x_0,y_0) - a(x-x_0) - b(y-y_0)}{\|(x-x_0,y-y_0)\|} \|(x-x_0,y-y_0)\| + a(x-x_0) + b(y-y_0) = 0$$

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) - f(x_0,y_0) = 0,$$

y como $f(x_0, y_0)$ es una constante $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$, o sea, f es continua en $(x_0,y_0) = P$, que es lo que queríamos demostrar.

2. Sea $f:U\subseteq\mathbb{R}^2\to\mathbb{R}$ con derivadas parciales continuas en U. Probar que f es diferenciable en U. **Demo:** Primero notemos que,

$$-1 \le \frac{x - x_0}{\|(x - x_0, y - y_0)\|}, \frac{y - y_0}{\|(x - x_0, y - y_0)\|} \le 1.$$
 (5)

Luego, por definición de derivada en una variable se cumple para todo y_0 que

$$\lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0) - \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0)}{x - x_0} = 0$$

y en particular como y no aparece, podemos hacerlo tender también a y_0 ,

$$\lim_{\substack{(x,y)\to(x_0,y_0)}} \frac{f(x,y_0) - f(x_0,y) - \frac{\partial f}{\partial x}(x_0,y_0)(x-x_0)}{x - x_0} = 0$$

y por (5) podemos decir que

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y_0) - f(x_0,y_0) - \frac{\partial f}{\partial x}(x_0,y_0)(x-x_0)}{x - x_0} \frac{x - x_0}{\|(x - x_0, y - y_0)\|} = 0$$

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y_0) - f(x_0,y_0) - \frac{\partial f}{\partial x}(x_0,y_0)(x-x_0)}{\|(x - x_0, y - y_0)\|} = 0$$
(6)

Ahora, veamos que, usando teorema del valor medio en una variable

$$f(x,y) - f(x,y_0) = \frac{\partial f}{\partial y}(x, c_{y,y_0})(y - y_0),$$

donde $c_{y,y_0} \in [y,y_0]$. Como f es de clase C^1 $\frac{\partial f}{\partial y}$ es continua y entonces.

$$\lim_{(x,y)\to (y,y_0)}\frac{\partial f}{\partial y}(x,c_{y,y_0})-\frac{\partial f}{\partial y}(x_0,y_0)=0,$$

porque $c_{y,y_0} \to y_0$ cuando $y \to y_0$. Ahora, de vuelta usando (5) podemos decir que

$$\lim_{(x,y)\to(x_{0},y_{0})} \left(\frac{\partial f}{\partial y}(x,c_{y,y_{0}}) - \frac{\partial f}{\partial y}(x_{0},y_{0}) \right) \frac{y-y_{0}}{\|(x-x_{0},y-y_{0})\|} = 0$$

$$\lim_{(x,y)\to(x_{0},y_{0})} \frac{\frac{\partial f}{\partial y}(x,c_{y,y_{0}})(y-y_{0}) - \frac{\partial f}{\partial y}(x_{0},y_{0})(y-y_{0})}{\|(x-x_{0},y-y_{0})\|} = 0$$

$$\lim_{(x,y)\to(x_{0},y_{0})} \frac{f(x,y)-f(x,y_{0}) - \frac{\partial f}{\partial y}(x_{0},y_{0})(y-y_{0})}{\|(x-x_{0},y-y_{0})\|} = 0.$$
(7)

Finalmente, sumando (6) y (7),

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y_0) - f(x_0,y_0) - \frac{\partial f}{\partial x}(x_0,y_0)(x-x_0)}{\|(x-x_0,y-y_0)\|} + \frac{f(x,y) - f(x,y_0) - \frac{\partial f}{\partial y}(x_0,y_0)(y-y_0)}{\|(x-x_0,y-y_0)\|} = 0$$

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y_0) - f(x_0,y_0) - \frac{\partial f}{\partial x}(x_0,y_0)(x-x_0) + f(x,y) - f(x,y_0) - \frac{\partial f}{\partial y}(x_0,y_0)(y-y_0)}{\|(x-x_0,y-y_0)\|} = 0$$

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y) - f(x_0,y_0) - \frac{\partial f}{\partial x}(x_0,y_0)(x-x_0) + -\frac{\partial f}{\partial y}(x_0,y_0)(y-y_0)}{\|(x-x_0,y-y_0)\|} = 0$$

3. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable en $P \in \mathbb{R}^2$ y $v \in \mathbb{R}^2$ tal que ||v|| = 1. Probar que existe $f_v(P)$ y es igual a $\nabla f(P) \cdot v$.

Demo: Sea $P = (x_0, y_0)$ y v = (c, d). Por definición de diferenciable existen las derivadas parciales en $P \frac{\partial f}{\partial x}(x_0, y_0) = a$ y $\frac{\partial f}{\partial x}(x_0, y_0) = b$ y se cumple que

$$\lim_{(x,y)\to(x_0,y_0)}\frac{f(x,y)-f(x_0,y_0)-a(x-x_0)-b(y-y_0)}{\|(x-x_0,y-y_0)\|}\quad=\quad 0,$$

en particular, podemos ver dicho límite por la recta $x(t) = x_0 + tc$, $y(t) = y_0 + td$,

$$\lim_{t \to 0} \frac{f(x_0 + tc, y_0 + td) - f(x_0, y_0) - a(x_0 + tc - x_0) - b(y_0 + td - y_0)}{t} = 0$$

$$\lim_{t \to 0} \frac{f(x_0 + tc, y_0 + td) - f(x_0, y_0) - atc - btd}{t} = 0$$

$$\lim_{t \to 0} \frac{f(x_0 + tc, y_0 + td) - f(x_0, y_0)}{t} - (ac + bd) = 0$$

$$f_v(P) = (a, c) \cdot (b, d)$$

$$f_v(P) = \nabla f(P) \cdot v.$$

4. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable en $P \in \mathbb{R}^2$ tal que $\nabla f(P) \neq 0$. Probar que la dirección de máximo crecimiento está dada por $\nabla f(P)$.

Demo: Queremos hallar un v de norma 1 tal que $f_v(P)$ sea máximo. Sabemos que $f_v(P) = \nabla f(P) \cdot v = ||v|| ||\nabla f(P)|| \cos(\theta) = ||\nabla f(P)|| \cos(\theta)$ donde θ es el ángulo entre v y $\nabla f(P)$. Dado que $||\nabla f(P)||$ es fijo, solo podemos fijar θ tal que $\cos(\theta)$ sea máximo, y esto es así cuando $\theta = 0$ ya que el coseno toma su máximo valor (1). Esto quiere decir que el ángulo entre v, la dirección de máximo crecimiento, y el gradiente es 0, por lo cual ambas apuntan en la misma dirección.

5. Teorema del valor medio para funciones diferenciables: Sea $f:U\subset\mathbb{R}^n\to\mathbb{R}$ definida sobre el abierto U. Sean $P_1,P_2\in U$ tales que el segmento P_1P_2 esta contenido en U. Existe un punto P tal que

$$f(P_1) - f(P_2) = \nabla f(P) \cdot (P_1 - P_2).$$

Demo: Sea $\sigma: \mathbb{R} \to \mathbb{R}^n$ tal que $\sigma(t) = P_2 + t(P_1 - P_2)$. Sea $g: \mathbb{R} \to \mathbb{R}$ tal que $g = f \circ \sigma$. Como f y σ son diferenciables, g también lo es. Por teorema del valor medio existe $c \in [0,1]$ tal que g(1) - g(0) = g'(c)(1 - 0) = g'(c).

$$q'(c) = (f \circ \sigma)'(c) = \nabla f(\sigma(c)) \mathbf{D} \sigma(c) = \nabla f(\sigma(c)) (P_1 - P_2)^t = \nabla f(\sigma(c)) \cdot (P_1 - P_2),$$

dado que $c \in [0,1]$ sabemos que $\sigma(c) \in P_1P_2 \subset U$ y por lo tanto tomando $P = \sigma(c) \in U$ queda:

$$g(1) - g(0) = f(P_1) - f(P_2) = \nabla f(P) \cdot (P_1 - P_2),$$

que es lo que queríamos demostrar.

6. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable en $P \in \mathbb{R}^2$ y P un extremo de f. Probar que $\nabla f(P) = 0$.

Demo: Sea $(x_0, y_0) = P$. Supongamos que $\nabla f(P) \neq 0$. Esto implica $\frac{\partial f}{\partial x}(P) \neq 0$ o $\frac{\partial f}{\partial y}(P) \neq 0$. Sin pérdida de generalidad supongamos $\frac{\partial f}{\partial x}(P) \neq 0$ (la demostración en el otro caso es análoga). Sea la función $g: \mathbb{R} \to \mathbb{R}$ tal que $g(x) = f(x, y_0)$. Como g es composición de diferenciables, es diferenciable (derivable). Es claro que $g'(x_0) = \frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial x}(P) \neq 0$ y por lo tanto x_0 no es extremo de g. Esto quiere decir que hay valores x_1 tan cercanos a x_0 como se quiera tal que $g(x_0) < g(x_1)$ y lo mismo para $g(x_0) > g(x_1)$. Podemos entonces construir el punto (x_1, y_0) tan cerca como se quiera de (x_0, y_0) tal que $f(x_1, y_0) = g(x_1) < g(x_0) = f(x_0, y_0)$ o que $f(x_1, y_0) = g(x_1) > g(x_0) = f(x_0, y_0)$, con lo cual $(x_0, y_0) = P$ no es extremo de P. Por contrarecíproco, si P es extremo de f, $\nabla f(P) = 0$.

- 7. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ de clase C^3 y P un punto crítico de f. Probar que:
 - lacktriangle si el hessiano de f en P es definido positivo, entonces P es un mínimo relativo estricto de f.
 - lacktriangle si el hessiano de f en P es definido negativo, entonces P es un máximo relativo estricto de f.

 \blacksquare si el hessiano de f en P es indefinido (o sea, no es definido positivo ni negativo), entonces P es un punto silla de f.

Demo: Reescribamos f como su polinomio de taylor de orden 2 centrado en P mas el resto de lagrange (el término lineal no aparece ya que P es punto crítico de f y por lo tanto su gradiente es nulo) 1 :

$$f(Q) = f(P) + \frac{1}{2}(Q - P)^{t}(\mathbf{H}f)(Q - P) +$$
 (9)

$$\frac{1}{6} \sum_{u,v,w \in \{x,y\}} (Q_u - P_u)(Q_v - P_v)(Q_w - P_w) \frac{\partial^3 f}{\partial u \partial v \partial w}(\xi_{u,v,w}). \tag{10}$$

La función definida por $g(v) = v^t(\mathbf{H}f)v$ para los v de norma 1 es una función continua sobre un compacto y por lo tanto alcanza un mínimo m y un máximo M. Si $\mathbf{H}f$ es definida positiva será $0 < m \le M$, si es definida negativa será $m \le M < 0$ y si es indefinida será $m \le 0 \le M$. Si utilizamos vectores de norma distinto de 1 se mantienen dichos límites multiplicados por la norma del vector al cuadrado (ya que la función g es bilineal).

Acotemos entonces con esto la expresión resulta:

$$f(Q) \geq f(P) + \|(Q - P)\|^2 \frac{m}{2} + \frac{1}{6} \sum_{u,v,w \in \{x,v\}} (Q_u - P_u)(Q_v - P_v)(Q_w - P_w) \frac{\partial^3 f}{\partial u \partial v \partial w}(\xi_{u,v}(1))$$

$$f(Q) \leq f(P) + \|(Q - P)\|^2 \frac{M}{2} + \frac{1}{6} \sum_{u,v,w \in \{x,y\}} (Q_u - P_u)(Q_v - P_v)(Q_w - P_w) \frac{\partial^3 f}{\partial u \partial v \partial w} (\xi_{u,v}, 12)$$

Ahora, el valor de las terceras derivadas parciales, para los Q cercanos a P es acotable por una constante, y si acotamos $(Q_u - P_u)(Q_v - P_v)(Q_w - P_w)$ por la norma al cubo (siempre en valor absoluto), obtenemos:

$$f(Q) \ge f(P) + \|(Q - P)\|^2 \frac{m}{2} - K \|(Q - P)\|^3$$
 (13)

$$f(Q) \le f(P) + \|(Q - P)\|^2 \frac{M}{2} + K \|(Q - P)\|^3$$
 (14)

(15)

Con lo cual, asumiendo $\min(m, M) \neq 0$ y tomando Q suficientemente cerca de P tal que $0 < \|(Q - P)\| < \frac{\min(|m|, |M|)}{2K}$, vemos que:

- Si el hessiano es definido positivo, usando 13 queda f(Q) mayor o igual a f(P) mas algo positivo para un entorno de P, o sea P es mínimo local.
- Si el hessiano es definido negativo, usando 14 análogamente, P es máximo local.
- Si el hessiano es indefinido y m < 0 y M > 0 utilizando Q suficientemente cerca de P y en la dirección que da el mínimo m, vemos que f(P) > f(Q), y análogamente en la dirección que da el máximo M f(P) < f(Q), con lo cual P no es máximo ni mínimo local, con lo cual es punto silla. Si m = 0/M = 0 puede pasar cualquier cosa (depende del resto, del que no sabemos nada) con el máximo/mínimo.

8. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable, $S = \{(x,y) \in \mathbb{R}^2 : g(x,y) = 0\}$ y $P \in S$. Si P es extremo de f restringido a S y $\nabla g(P) \neq 0$, probar que existe $\lambda \in \mathbb{R}$ tal que $\nabla f(P) = \lambda \nabla g(P)$.

Demo: Sea P = (x, y). Por teorema de la función implícita (aplica porque $\nabla g(P) \neq 0$) existe una función h tal que en una vecindad de P se cumple g(x, h(x)) = 0. Podemos ver entonces que en dicha vecindad $\nabla g = 0$ lo que implica, por regla de la cadena,

$$\nabla g(x, h(x))(x, h(x)) = \nabla g(x, h(x)) \cdot (1, h'(x)) = 0.$$

 $^{^{1}}$ para la expresión del resto usamos un abuso de notación, con la idea de hacer mas concisa la demostración, P_{u} denota el valor de la coordenada u en el punto P.

Ahora lo que queremos es un extremo de f(x,h(x)) sin ninguna restricción (ya que el punto (x,h(x)) siempre pertence a S). Para esto tomamos el gradiente igual a $0: \nabla f(x,h(x))(x,h(x)) = \nabla f(x,h(x)) \cdot (1,h'(x)) = 0$. Dado que $\nabla g(x,h(x))$ y $\nabla f(x,h(x))$ son ambos perpendiculares al vector (1,h'(x)) (su producto interno da 0), deben ser paralelos entre sí, por lo cual existe λ tal que $\nabla f(x,h(x)) = \lambda \nabla g(x,h(x))$ y como $P \in S \Rightarrow y = h(x) \Rightarrow P = (x,h(x))$ queda demostrado el teorema.

4.3. Integración

1. Sea $f:[a,b]\to\mathbb{R}$ continua. Probar que f es integrable sobre [a,b].

Demo: Recordando la definición de integral (Definición 17) queremos ver que

$$\inf(\{\sum_{c \in C} |c| M_c\}) \le \sup(\{\sum_{c \in C} |c| m_c\})$$

coinciden, donde C es una partición en intervalos de [a,b], M_c es el supremo de la imagen de f sobre c y m_c es su ínfimo. Dado que f es continua sobre un compacto, es acotada y por lo tanto M_c y m_c están definidas para todo c. Es claro que todos los elementos del conjunto de sumas superiores son mayores o iguales a todos los del conjunto de sumas inferiores, ya que dadas una partición de cada conjunto, tomando un refinamiento común es claro que la que usa supremos es mayor o igual. Ahora, veamos que para cualquier $\varepsilon > 0$ existe una suma superior y una inferior que estan a lo sumo a ε de distancia. Como f es continua sobre un compacto, es uniformemente continua, y por lo tanto para cualquier $\varepsilon' > 0$ existe δ tal que $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon'$. Sea tal δ para $\varepsilon' = \varepsilon/(b-a)$. Tomemos la partición C de [a,b] tal que,

$$C = \left\{ [a + i\frac{\delta}{2}, a + (i+1)\frac{\delta}{2}) \mid i \in \mathbb{N}, 0 \leq i \leq \left\lfloor 2\frac{b-a}{\delta} \right\rfloor \right\} \cup \left\{ [a + \frac{\delta}{2} \left\lfloor 2\frac{b-a}{\delta} \right\rfloor, b] \right\}$$

Ahora, cualquier par de reales en esos intervalos estan a distancia menor o igual a $\delta/2 < \delta$, por lo cual el máximo y el mínimo de cada intervalo estan a distancia menor a ε' . Tomemos la diferencia entre la suma superior y la suma inferior sobre C,

$$\sum_{c \in C} (M_c - m_c)|c| < \sum_{c \in C} \varepsilon'|c| = \varepsilon' \sum_{c \in C} |c| = \varepsilon'(b - a) = \varepsilon.$$

De esta manera vemos que la diferencia entre el supremo de las sumas inferiores y el ínfimo de las superiores no puede ser ningún $\varepsilon > 0$, por lo tanto es 0.

2. Teorema fundamental del cálculo. Si f es continua en $[a, b], x \in [a, b],$

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x).$$

Demo: Por definición de derivada

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = \lim_{h \to 0} \frac{\int_{a}^{x+h} f(t)dt - \int_{a}^{x} f(t)dt}{h}$$
$$= \lim_{h \to 0} \frac{\int_{x}^{x+h} f(t)dt}{h}$$

Sea M_h el máximo para f en [x, x+h] (existe porque [x, x+h] es un compacto) y m_h el mínimo (ídem). Ahora podemos acotar el límite como

$$\begin{array}{lcl} \lim\limits_{h\to 0}\frac{m_hh}{h} & \leq & \lim\limits_{h\to 0}\frac{\int_x^{x+h}f(t)dt}{h} & \leq & \lim\limits_{h\to 0}\frac{M_hh}{h} \\ \lim\limits_{h\to 0}m_h & \leq & \lim\limits_{h\to 0}\frac{\int_x^{x+h}f(t)dt}{h} & \leq & \lim\limits_{h\to 0}M_h \end{array}$$

y como

$$\lim_{h\to 0} M_h = \lim_{h\to 0} m_h = f(x),$$

queda demostrado.

3. Teorema del valor medio para integrales doles: Sea $P \in \mathbb{R}^2$. Si f es continua en $B(\bar{P}, r)$ entonces existe $Q \in B(\bar{P}, r)$ tal que,

$$\frac{1}{\operatorname{\acute{A}rea}(B(P,r))}\iint_{B(P,r)}f(x,y)\;dA=f(Q).$$

Demo: Como f es una función continua en el compacto $B(\bar{P}, r)$, alcanza su máximo f(M) en algún punto M y su mínimo f(N) en algún punto N. De esta manera podemos acotar la integral de f sobre B(P, r) haciendo

$$\begin{split} \iint_{B(P,r)} f(N) \; dA & \leq \qquad \iint_{B(P,r)} f(x,y) \; dA \qquad \leq \qquad \iint_{B(P,r)} f(M) \; dA \\ f(N) \iint_{B(P,r)} 1 \; dA & \leq \qquad \iint_{B(P,r)} f(x,y) \; dA \qquad \leq \qquad f(M) \iint_{B(P,r)} 1 \; dA \\ f(N) \text{\'Area}(B(P,r)) & \leq \qquad \iint_{B(P,r)} f(x,y) \; dA \qquad \leq \qquad f(M) \text{\'Area}(B(P,r)) \\ f(N) & \leq \qquad \frac{1}{\text{\'Area}(B(P,r))} \iint_{B(P,r)} f(x,y) \; dA \; \leq \; f(M) \end{split}$$

notando en el último paso que el área es siempre positiva. Dado que f es continua podemos definir su restriccion g al segmento MN de forma continua y por Bolsano existe en dicho segmento un punto Q tal que f(Q) es exactamente lo que queríamos demostrar.