ALGORITMOS Y ESTRUCTURAS DE DATOS III Final / 19-FEB-2021

- 1. [2.5 puntos] Un grafo G conexo se dice 2-nodo conectado si no tiene puntos de corte (un nodo que al sacarlo desconecta el grafo). Un grafo G se dice 2-arista conectado si no tiene puentes (una arista que al sacarla desconecta el grafo).
 - (a) Probar que un grafo G es 2-nodo conectado si, y solo si, todo par de nodos de G está en un mismo circuito simple.
 - (b) ¿Es cierto que si un grafo G conexo es 2-nodo conectado entonces es 2-arista conectado? Justificar.
 - (c) ¿Es cierta la recíproca? Justificar.
- 2. [2.5 puntos] Dado un conjunto de enteros positivos $S = \{s_0 = 0 \le s_1 \le ... \le s_n = M\}$, queremos saber si es posible poner estaciones de serivicio sobre una autopista de M kilómetros de forma que se cumpla:
 - Una estación de servicio sólo puede ser puesta a distancia $s_i \in S$, para algún $i, 0 \le i \le n$,, desde el comienzo de la autopista.
 - Debe haber una estación de serivicio al comienzo de la autopista $(s_0 = 0)$ y al final $(s_n = M)$.
 - La distancia entre dos estaciones de servicio consecutivas debe estar entre 15 y 25 kilómetros.

Por ejemplo, si $S = \{0, 15, 40, 50, 60\}$, la respuesta es SI, porque se pueden poner estaciones a las distancias $\{0, 15, 40, 60\}$ desde el comienzo de la autopista.

Mientras que si $S = \{0, 25, 30, 55, 70\}$, entonces la respuesta es NO, porque no hay un subconjunto de S que satisfaga las restricciones pedidas.

- (a) Dar un algoritmo de programación dinámica que resuelva el problema.
- (b) Probar su correctitud y calcular su complejidad.
- 3. [2.5 puntos] Un grafo k-partito completo es un grafo G=(V,X) cuyo conjunto de vértices puede ser particionado en k subconjuntos V_1,V_2,\ldots,V_k ($\bigcup_{i=1}^k V_i=V,\ V_i\neq\emptyset\ \forall i,\ V_i\cap V_j=\emptyset$ si $i\neq j$), de modo que si $u\in V_i$ y $v\in V_j$, para $i\neq j$, entonces $(u,v)\in X$, y si $u,v\in V_i$ entonces $(u,v)\notin X$.
 - (a) ¿Cuál es el número cromático de un grafo k-partito completo?
 - (b) Probar que el algoritmo goloso secuencial aplicado a un grafo k-partito completo produce un coloreo óptimo de G cualquiera sea el orden en que se tomen los vértices.
- 4. [2.5 puntos] El problema del árbol generador de bajo grado es el siguiente: dado un grafo G = (V, X) y un entero positivo k, ξG contiene un árbol generador T tal que para todo vértice $v \in V$ se cumpla que $d_T(v) \le k$ ($d_T(v)$ es el grado de v en el árbol T)?
 - ¿A qué clase de complejidad pertenece este problema? Justificar.