Final de Álgebra

22/12/2021

Ejercicio 1

Sea $A = \{0, 1, 2, 3, 4, 5, 6, 7\}$ y sea \mathcal{F} el conjunto de funciones f de A en A. Se define la relación siguiente en \mathcal{F} :

$$f \mathcal{R} g \iff f(2) \leq g(2).$$

- (a) Estudiar si $\mathcal R$ es reflexiva, simétrica, antisimétrica y transitiva.
- (b) Sea $f \in \mathcal{F}$ la función definida por $f(m) = r_8(7m)$ para $m \in A$. Calcular la cantidad de funciones $g \in \mathcal{F}$ que satisfacen que $f \mathcal{R} g$, y también la cantidad de funciones **inyectivas** $h \in \mathcal{F}$ que satisfacen que $f \mathcal{R} h$.

Ejercicio 2

Sea $a \in \mathbb{Z}$ tal que $a \equiv 2 \pmod{28}$. Clasificar los valores que toma

$$(3a+196^n:2a-196^n)$$

según los distintos valores de a, descritos en la forma $a \equiv r \pmod{m}$ para $r, m \in \mathbb{N}$ adecuados, y de $n \in \mathbb{N}$.

Ejercicio 3

Sea $\omega=e^{\frac{\pi}{3}i},$ y sea $(z_n)_{n\in\mathbb{N}}$ la sucesión de números complejos definida por:

$$z_1 = \omega - 1$$
 y $z_{n+1} = \overline{z_n}^{3n+8}$, $\forall n \ge 1$.

Calcular z_n para todo $n \in \mathbb{N}$.

Ejercicio 4

(a) Determinar todos los $a,b\in\mathbb{Z}$ coprimos y no nulos para los cuales el polinomio

$$X^4 + iX^3 + 2X^2 + aiX + b$$

tiene al menos una raíz racional.

(b) Para cada par de valores hallado, factorizar el polinomio obtenido en $\mathbb{C}[X]$.