Algebra I Examen Final (18/2/2022)

1. Sea \Re la relación en $A := \{2, 3, 4, 5, ..., 9999, 10000\}$ definida por

$$n \Re m \iff (n:m) \neq 1.$$

- (a) Estudiar si R es reflexiva, simétrica, antisimétrica y/o transitiva.
- (b) Determinar la cantidad de $m \in A$ que satisfacen que 12 $\Re m$.
- 2. Determinar todos los primos $p \in \mathbb{N}$ para los cuales la ecuación de congruencia

$$pX \equiv 2 \cdot 3^{p^2+4} \pmod{35p^2}$$

tiene solución y para cada primo hallado, resolverla.

3. Sea g un polinomio que satisface que $g(0) \neq 0$ y sea $(f_n)_{n \in \mathbb{N}}$ la sucesión de polinomios definida por:

$$f_1 := X g \quad y \quad f_{n+1} = (X f'_n)^n, \ \forall \ n \in \mathbb{N}.$$

Determinar y probar una fórmula para la multiplicidad exacta de 0 como raíz de f_n , para todo $n \in \mathbb{N}$.

4. Determinar todos los números reales a, b para los cuales el polinomio

$$f = 3X^5 + 10X^4 + 12X^3 + 3X^2 + aX + b$$

satisface que $(f: X^3 + X^2 - 2)$ tiene grado 2, y para cada par de valores hallado factorizar f en $\mathbb{R}[X]$.